Home
Class 12
MATHS
Set of values of x lying in [0, 2pi] sat...

Set of values of x lying in `[0, 2pi]` satisfying the inequality `|sin x | gt 2 sin^(2)` x contains

A

`(0, pi/6) uu (pi, (7pi)/(6))`

B

`(0, (7pi)/(6))`

C

`pi/6`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( |\sin x| > 2 \sin^2 x \) for \( x \) in the interval \( [0, 2\pi] \), we will follow these steps: ### Step 1: Rewrite the Inequality We start with the inequality: \[ |\sin x| > 2 \sin^2 x \] This can be split into two cases based on the definition of absolute value. ### Step 2: Case 1: \( \sin x \geq 0 \) In this case, \( |\sin x| = \sin x \). Thus, the inequality becomes: \[ \sin x > 2 \sin^2 x \] Rearranging gives: \[ \sin x - 2 \sin^2 x > 0 \] Factoring out \( \sin x \): \[ \sin x (1 - 2 \sin x) > 0 \] This product is positive when both factors are positive or both factors are negative. ### Step 3: Find Critical Points for Case 1 The critical points occur when: 1. \( \sin x = 0 \) which gives \( x = 0, \pi, 2\pi \) 2. \( 1 - 2 \sin x = 0 \) which gives \( \sin x = \frac{1}{2} \) or \( x = \frac{\pi}{6}, \frac{5\pi}{6} \) ### Step 4: Test Intervals for Case 1 The critical points divide the interval \( [0, \pi] \) into the following intervals: - \( (0, \frac{\pi}{6}) \) - \( (\frac{\pi}{6}, \frac{5\pi}{6}) \) - \( (\frac{5\pi}{6}, \pi) \) Testing these intervals: 1. For \( x \in (0, \frac{\pi}{6}) \): Choose \( x = \frac{\pi}{12} \) - \( \sin(\frac{\pi}{12} ) > 2 \sin^2(\frac{\pi}{12}) \) → True 2. For \( x \in (\frac{\pi}{6}, \frac{5\pi}{6}) \): Choose \( x = \frac{\pi}{2} \) - \( \sin(\frac{\pi}{2}) > 2 \sin^2(\frac{\pi}{2}) \) → False 3. For \( x \in (\frac{5\pi}{6}, \pi) \): Choose \( x = \frac{3\pi}{4} \) - \( \sin(\frac{3\pi}{4}) > 2 \sin^2(\frac{3\pi}{4}) \) → True Thus, for Case 1, the solution is: \[ x \in [0, \frac{\pi}{6}) \cup (\frac{5\pi}{6}, \pi) \] ### Step 5: Case 2: \( \sin x < 0 \) In this case, \( |\sin x| = -\sin x \). Thus, the inequality becomes: \[ -\sin x > 2 \sin^2 x \] Rearranging gives: \[ 2 \sin^2 x + \sin x > 0 \] Factoring out \( \sin x \): \[ \sin x (2 \sin x + 1) > 0 \] ### Step 6: Find Critical Points for Case 2 The critical points occur when: 1. \( \sin x = 0 \) which gives \( x = \pi, 2\pi \) 2. \( 2 \sin x + 1 = 0 \) which gives \( \sin x = -\frac{1}{2} \) or \( x = \frac{7\pi}{6}, \frac{11\pi}{6} \) ### Step 7: Test Intervals for Case 2 The critical points divide the interval \( [\pi, 2\pi] \) into: - \( (\pi, \frac{7\pi}{6}) \) - \( (\frac{7\pi}{6}, \frac{11\pi}{6}) \) - \( (\frac{11\pi}{6}, 2\pi) \) Testing these intervals: 1. For \( x \in (\pi, \frac{7\pi}{6}) \): Choose \( x = \frac{5\pi}{6} \) - \( \sin(\frac{5\pi}{6}) < 0 \) → True 2. For \( x \in (\frac{7\pi}{6}, \frac{11\pi}{6}) \): Choose \( x = \frac{3\pi}{2} \) - \( \sin(\frac{3\pi}{2}) < 0 \) → False 3. For \( x \in (\frac{11\pi}{6}, 2\pi) \): Choose \( x = \frac{13\pi}{6} \) - \( \sin(\frac{13\pi}{6}) < 0 \) → True Thus, for Case 2, the solution is: \[ x \in [\pi, \frac{7\pi}{6}) \cup (\frac{11\pi}{6}, 2\pi) \] ### Step 8: Combine Solutions Combining the solutions from both cases, we have: \[ x \in [0, \frac{\pi}{6}) \cup (\frac{5\pi}{6}, \pi) \cup [\pi, \frac{7\pi}{6}) \cup (\frac{11\pi}{6}, 2\pi) \] ### Final Answer The set of values of \( x \) satisfying the inequality \( |\sin x| > 2 \sin^2 x \) in the interval \( [0, 2\pi] \) is: \[ x \in [0, \frac{\pi}{6}) \cup (\frac{5\pi}{6}, \frac{7\pi}{6}) \cup (\frac{11\pi}{6}, 2\pi) \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Solved Examples : Single Option Correct Type Questions|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

The complete set of values of x, x in (-(pi)/(2), pi) satisfying the inequality cos 2x gt |sin x| is :

The set of values of x in (-pi, pi) satisfying the inequation |4"sin" x-1| lt sqrt(5) , is

The number of values of x in the interval [0, 3pi] satisfying the equation 2sin^2x + 5sin x- 3 = 0 is

The number of values of x in [0,2pi] satisfying the equation |cos x – sin x| >= sqrt2 is

The set of values of x in R satisfying the inequality x^(2)-4x-21 le 0 is

The number of values of x in the interval [0,5pi] satisfying the equation. 3sin^(2)x -7sinx + 2=0 is-

The number of values of x in [0, 4 pi] satisfying the inequation |sqrt(3)"cos" x - "sin"x|ge2 , is

The number of values of x in the interval [0, 3pi] satisfying the equation 3sin^(2)x-7sinx+2=0 is

The values of x in (0, pi) satisfying the equation. |{:(1+"sin"^(2)x, "sin"^(2)x, "sin"^(2)x), ("cos"^(2)x, 1+"cos"^(2)x, "cos"^(2)x), (4"sin" 2x, 4"sin"2x, 1+4"sin" 2x):}| = 0 , are

The number of values of x lying in the inteval (-2pi, 2pi) satisfying the equation 1+cos 10x cos 6x=2 cos^(2)8x+sin^(2)8x is equal to

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Set of values of x lying in [0, 2pi] satisfying the inequality |sin x ...

    Text Solution

    |

  2. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  3. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  4. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  5. Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for theta ...

    Text Solution

    |

  6. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  7. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  8. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  9. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)^(...

    Text Solution

    |

  10. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  11. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  12. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  13. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  14. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  15. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  16. Let cos(alpha+beta)""=4/5 and let sin (alpha+beta)""=5/(13) where 0lt=...

    Text Solution

    |

  17. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  18. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  19. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  20. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |