Home
Class 12
MATHS
Let alpha and beta be any two positve v...

Let `alpha` and ` beta` be any two positve values of x for which `2 cos x, | cos x|` and `1-3 cos^(2)x` are in GP. The minium value of `|alpha+beta|` is

A

`pi/3`

B

`pi/4`

C

`pi/2`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the minimum value of \(|\alpha + \beta|\) where \(\alpha\) and \(\beta\) are the angles for which \(2 \cos x\), \(|\cos x|\), and \(1 - 3 \cos^2 x\) are in geometric progression (GP). ### Step-by-Step Solution: 1. **Understanding the Condition for GP**: Given three terms \(a\), \(b\), and \(c\) are in GP, the condition is: \[ b^2 = ac \] Here, we have: - \(a = 2 \cos x\) - \(b = |\cos x|\) - \(c = 1 - 3 \cos^2 x\) 2. **Setting Up the Equation**: Plugging in the values, we get: \[ |\cos x|^2 = (2 \cos x)(1 - 3 \cos^2 x) \] Since \(\cos x\) is positive in the range we are considering, we can drop the absolute value: \[ \cos^2 x = 2 \cos x (1 - 3 \cos^2 x) \] 3. **Expanding and Rearranging**: Expanding the right side: \[ \cos^2 x = 2 \cos x - 6 \cos^3 x \] Rearranging gives: \[ 6 \cos^3 x + \cos^2 x - 2 \cos x = 0 \] 4. **Factoring the Equation**: We can factor out \(\cos x\): \[ \cos x (6 \cos^2 x + \cos x - 2) = 0 \] This gives us one solution: \[ \cos x = 0 \quad \text{(not valid since we need positive values)} \] Now we solve the quadratic: \[ 6 \cos^2 x + \cos x - 2 = 0 \] 5. **Using the Quadratic Formula**: Using the quadratic formula \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\): Here, \(a = 6\), \(b = 1\), and \(c = -2\): \[ \cos x = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 6 \cdot (-2)}}{2 \cdot 6} \] \[ = \frac{-1 \pm \sqrt{1 + 48}}{12} = \frac{-1 \pm 7}{12} \] This gives: \[ \cos x = \frac{6}{12} = \frac{1}{2} \quad \text{or} \quad \cos x = \frac{-8}{12} = -\frac{2}{3} \] 6. **Finding Angles**: - For \(\cos x = \frac{1}{2}\): \[ x = \alpha = \frac{\pi}{3} \] - For \(\cos x = -\frac{2}{3}\): \[ x = \beta = \cos^{-1}\left(-\frac{2}{3}\right) \] 7. **Calculating \(|\alpha + \beta|\)**: We need to find: \[ |\alpha + \beta| = \left|\frac{\pi}{3} + \cos^{-1}\left(-\frac{2}{3}\right)\right| \] 8. **Finding Minimum Value**: Since both \(\alpha\) and \(\beta\) are positive angles, the minimum value of \(|\alpha + \beta|\) is simply: \[ \text{Minimum value of } |\alpha + \beta| = \frac{\pi}{3} + \cos^{-1}\left(-\frac{2}{3}\right) \] ### Final Answer: The minimum value of \(|\alpha + \beta|\) is: \[ \frac{\pi}{3} + \cos^{-1}\left(-\frac{2}{3}\right) \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Solved Examples : Single Option Correct Type Questions|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

Let alpha, beta be any two positive values of x for which 2"cos"x, |"cos"x| " and " 1-3"cos"^(2) x are in G.P. The minimum value of |alpha -beta| , is

Let alphaa n dbeta be any two positive values of x for which 2cosx ,|cosx|, and 1-3cos^2x are in G.P. The minimum value of |alpha-beta| is pi/3 (b) pi/4 (c) pi/2 (d) none of these

Let alphaa n dbeta be any two positive values of x for which 2cosx ,|cosx|, and 1-3cos^2x are in G.P. The minimum value of |alpha-beta| is pi/3 (b) pi/4 (c) pi/2 (d) none of these

If alpha, beta are two different values of x lying between 0 and 2pi which satisfy the equation 6 cos x + 8 sin x = 9 , find the value of sin (alpha + beta)

If sin alpha sin beta - cos alpha cos beta + 1=0, then the value of 1+cot alpha tan beta is

If alpha + beta = 90^0 , show that the maximum value of cos alpha.cos beta is 1/2 .

If sin alpha cos beta=-(1)/(2) then find the range of values of cos alpha sin beta

If alpha le sin^(-1)x+cos^(-1)x +tan^(-1)xlebeta then find the value of alpha and beta

If alpha,beta are the roots of the quadratic equation x^2-2(1-sin2theta)x-2 cos^2(2theta) = 0 , then the minimum value of (alpha^2+beta^2) is equal to

Let alpha, beta be such that pi lt alpha-betalt3pi if sin alpha+sinbeta = -21/65 and cos alpha+cos beta = -27/65 , then the value of cos(alpha-beta)/(2) is

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Let alpha and beta be any two positve values of x for which 2 cos x, ...

    Text Solution

    |

  2. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  3. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  4. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  5. Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for theta ...

    Text Solution

    |

  6. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  7. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  8. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  9. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)^(...

    Text Solution

    |

  10. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  11. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  12. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  13. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  14. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  15. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  16. Let cos(alpha+beta)""=4/5 and let sin (alpha+beta)""=5/(13) where 0lt=...

    Text Solution

    |

  17. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  18. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  19. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  20. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |