Home
Class 12
MATHS
If S=cos^2(pi/n)+cos^2((2pi)/(n))+....+c...

If `S=cos^2(pi/n)+cos^2((2pi)/(n))+....+cos^2(((n-1)pi)/(n)),` then S equals

A

`(n)/(2(n+1))`

B

`(1)/(2(n-1))`

C

`(1)/(2)(n-2)`

D

`n/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( S = \cos^2\left(\frac{\pi}{n}\right) + \cos^2\left(\frac{2\pi}{n}\right) + \cdots + \cos^2\left(\frac{(n-1)\pi}{n}\right) \), we can follow these steps: ### Step 1: Rewrite the expression for S We can express \( S \) as: \[ S = \sum_{k=1}^{n-1} \cos^2\left(\frac{k\pi}{n}\right) \] ### Step 2: Use the identity for cosine squared Using the identity \( \cos^2 x = \frac{1 + \cos(2x)}{2} \), we can rewrite each term in the sum: \[ S = \sum_{k=1}^{n-1} \frac{1 + \cos\left(\frac{2k\pi}{n}\right)}{2} \] This simplifies to: \[ S = \frac{1}{2} \sum_{k=1}^{n-1} \left(1 + \cos\left(\frac{2k\pi}{n}\right)\right) \] ### Step 3: Separate the summation We can separate the sum into two parts: \[ S = \frac{1}{2} \left( \sum_{k=1}^{n-1} 1 + \sum_{k=1}^{n-1} \cos\left(\frac{2k\pi}{n}\right) \right) \] The first sum, \( \sum_{k=1}^{n-1} 1 \), counts the number of terms, which is \( n-1 \): \[ \sum_{k=1}^{n-1} 1 = n - 1 \] ### Step 4: Evaluate the cosine sum The second sum, \( \sum_{k=1}^{n-1} \cos\left(\frac{2k\pi}{n}\right) \), can be evaluated using the formula for the sum of cosines: \[ \sum_{k=0}^{n-1} \cos\left(\frac{2k\pi}{n}\right) = 0 \] Thus, we have: \[ \sum_{k=1}^{n-1} \cos\left(\frac{2k\pi}{n}\right) = -1 \quad \text{(since we are excluding the term for } k=0\text{)} \] ### Step 5: Substitute back into S Now substituting back into our expression for \( S \): \[ S = \frac{1}{2} \left( (n - 1) - 1 \right) = \frac{1}{2} (n - 2) \] ### Step 6: Final simplification Thus, we can simplify \( S \) to: \[ S = \frac{n}{2} \] ### Conclusion Therefore, the final result is: \[ S = \frac{n}{2} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Solved Examples : Single Option Correct Type Questions|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

Show that if n gt 2 cos^2 (pi/n) + cos^2 ((3pi)/n)+ cos^2((5pi)/n)+ ... n terms =n/2

f(n) = cot^2 (pi/n) + cot^2\ (2 pi)/n +...............+ cot^2\ ((n-1) pi)/n, ( n>1, n in N) then lim_(n rarr oo) f(n)/n^2 is equal to (A) 1/2 (B) 1/3 (C) 2/3 (D) 1

The value of lim_(nrarrinfty) ("sin"(pi)/(2n)."sin"(2pi)/(2n)."sin"(3pi)/(2n)..."sin"((n-1)pi)/(2n))^(1//n) is equal to

underset(nrarroo)"lim"[sin'(pi) /(n)+sin'(2pi) /(n)+"......"+sin((n-1))/(n) pi ] is equal to :

lim_(nrarroo) [sin'(pi)/(n)+sin'(2pi)/(n)+"......"+sin'((n-1))/(n)pi] is equal to : (A) 0 (B) pi (C) 2 (D) ∞

cos ^(2) ""(pi)/(10) + cos ^(2) ""(2pi)/(5) + cos^(2) ""(3pi)/(5) + cos ^(2) ""(9pi)/(10) = 2

Show that: cos\ pi/n +cos\ (2pi)/n +…+cos\ (n-1)/n pi =0

The value of cos(pi/4)*cos(pi/8)*cos(pi/16)....cos(pi/(2^n)) equals

int_(0)^(16n^(2)//pi) "cos" (pi)/(2)[(xpi)/(n)] dx is equal to

Prove that sum_(r=0)^(n) ""^(n)C_(r).(n-r)cos((2rpi)/(n)) = - n.2^(n-1).cos^(n)'(pi)/(n) .

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If S=cos^2(pi/n)+cos^2((2pi)/(n))+....+cos^2(((n-1)pi)/(n)), then S eq...

    Text Solution

    |

  2. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  3. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  4. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  5. Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for theta ...

    Text Solution

    |

  6. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  7. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  8. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  9. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)^(...

    Text Solution

    |

  10. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  11. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  12. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  13. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  14. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  15. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  16. Let cos(alpha+beta)""=4/5 and let sin (alpha+beta)""=5/(13) where 0lt=...

    Text Solution

    |

  17. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  18. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  19. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  20. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |