Home
Class 12
MATHS
If A=[(cos^(2)alpha, cos alpha sin alpha...

If `A=[(cos^(2)alpha, cos alpha sin alpha),(cos alpha sin alpha, sin^(2)alpha)]` and `B=[(cos^(2)betas,cos beta sin beta),(cos beta sin beta, sin^(2) beta)]` are two matrices such that the product AB is null matrix, then `alpha-beta` is

A

`alpha=beta`

B

`cos (alpha-beta)=0`

C

`sin(alpha-beta)=0`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \alpha - \beta \) given that the product of matrices \( A \) and \( B \) is a null matrix. Given: \[ A = \begin{pmatrix} \cos^2 \alpha & \cos \alpha \sin \alpha \\ \cos \alpha \sin \alpha & \sin^2 \alpha \end{pmatrix} \] \[ B = \begin{pmatrix} \cos^2 \beta & \cos \beta \sin \beta \\ \cos \beta \sin \beta & \sin^2 \beta \end{pmatrix} \] We need to compute the product \( AB \) and set it equal to the null matrix. ### Step 1: Compute the product \( AB \) The product of two matrices \( A \) and \( B \) is given by: \[ AB = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \] Calculating each element of the resulting matrix \( AB \): 1. **First Row, First Column**: \[ a_{11}b_{11} + a_{12}b_{21} = \cos^2 \alpha \cos^2 \beta + \cos \alpha \sin \alpha \cos \beta \sin \beta \] 2. **First Row, Second Column**: \[ a_{11}b_{12} + a_{12}b_{22} = \cos^2 \alpha \cos \beta \sin \beta + \cos \alpha \sin \alpha \sin^2 \beta \] 3. **Second Row, First Column**: \[ a_{21}b_{11} + a_{22}b_{21} = \cos \alpha \sin \alpha \cos^2 \beta + \sin^2 \alpha \cos \beta \sin \beta \] 4. **Second Row, Second Column**: \[ a_{21}b_{12} + a_{22}b_{22} = \cos \alpha \sin \alpha \cos \beta \sin \beta + \sin^2 \alpha \sin^2 \beta \] Thus, the product \( AB \) can be written as: \[ AB = \begin{pmatrix} \cos^2 \alpha \cos^2 \beta + \cos \alpha \sin \alpha \cos \beta \sin \beta & \cos^2 \alpha \cos \beta \sin \beta + \cos \alpha \sin \alpha \sin^2 \beta \\ \cos \alpha \sin \alpha \cos^2 \beta + \sin^2 \alpha \cos \beta \sin \beta & \cos \alpha \sin \alpha \cos \beta \sin \beta + \sin^2 \alpha \sin^2 \beta \end{pmatrix} \] ### Step 2: Set \( AB \) equal to the null matrix For \( AB \) to be a null matrix, all elements must equal zero. We can start with the first element: \[ \cos^2 \alpha \cos^2 \beta + \cos \alpha \sin \alpha \cos \beta \sin \beta = 0 \] ### Step 3: Factor the equation We can factor out \( \cos \alpha \cos \beta \): \[ \cos \alpha \cos \beta (\cos \alpha \cos \beta + \sin \alpha \sin \beta) = 0 \] This gives us two cases: 1. \( \cos \alpha = 0 \) 2. \( \cos \beta = 0 \) 3. \( \cos \alpha \cos \beta + \sin \alpha \sin \beta = 0 \) ### Step 4: Analyze the cases 1. **Case 1**: If \( \cos \alpha = 0 \), then \( \alpha = \frac{\pi}{2} + n\pi \). 2. **Case 2**: If \( \cos \beta = 0 \), then \( \beta = \frac{\pi}{2} + m\pi \). 3. **Case 3**: The equation \( \cos \alpha \cos \beta + \sin \alpha \sin \beta = 0 \) simplifies to: \[ \cos(\alpha - \beta) = 0 \] This implies: \[ \alpha - \beta = \frac{\pi}{2} + k\pi \] ### Conclusion The simplest case is when \( \alpha - \beta = \frac{\pi}{2} \). Thus, the answer is: \[ \alpha - \beta = \frac{\pi}{2} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Solved Examples : Single Option Correct Type Questions|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

If f(alpha,beta)=|(cos alpha,-sin alpha,1),(sin alpha,cos alpha,1),(cos(alpha+beta),-sin(alpha+beta),1)|, then

lf cos^2 alpha -sin^2 alpha = tan^2 beta , then show that tan^2 alpha = cos^2 beta-sin^2 beta .

Show that cos ^2 alpha + cos^2 (alpha +Beta) - 2 cos alpha cos betacos (alpha+ beta) =sin^2 beta

The vector cos alpha cos beta hati + cos alpha sin beta hatj + sin alpha hatk is a

Prove that (sin alpha cos beta + cos alpha sin beta) ^(2) + (cos alpha coa beta - sin alpha sin beta) ^(2) =1.

Evaluate : |{:( 0, sin alpha , - cos alpha ), ( - sin alpha , 0 , sin beta) , (cos alpha , -sin beta , 0):}|

If A(alpha, beta)=[("cos" alpha,sin alpha,0),(-sin alpha,cos alpha,0),(0,0,e^(beta))] , then A(alpha, beta)^(-1) is equal to

If cos(alpha+beta)=0 then sin(alpha+2beta)=

Prove that |(sin alpha,cos alpha,sin(alpha+delta)),(sin beta,cos beta,sin(beta+delta)),(sin gamma,cos gamma,sin(gamma+delta))|=0

Find the area of the triangle whose vertices are : (a cos alpha, b sin alpha), (a cos beta, b sin beta), (a cos gamma, b sin gamma)

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If A=[(cos^(2)alpha, cos alpha sin alpha),(cos alpha sin alpha, sin^(2...

    Text Solution

    |

  2. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  3. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  4. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  5. Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for theta ...

    Text Solution

    |

  6. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  7. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  8. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  9. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)^(...

    Text Solution

    |

  10. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  11. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  12. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  13. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  14. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  15. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  16. Let cos(alpha+beta)""=4/5 and let sin (alpha+beta)""=5/(13) where 0lt=...

    Text Solution

    |

  17. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  18. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  19. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  20. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |