Home
Class 12
MATHS
If a^(2)-2a cos x +1=674 and tan (x/2)=7...

If `a^(2)-2a cos x +1=674` and `tan (x/2)=7` then the integral value of a is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given equation and the information about \( \tan(x/2) \). ### Step 1: Rewrite the given equation We have: \[ a^2 - 2a \cos x + 1 = 674 \] This can be rearranged to: \[ a^2 - 2a \cos x + 1 - 674 = 0 \] or: \[ a^2 - 2a \cos x - 673 = 0 \] ### Step 2: Use the identity for \( \cos x \) We know that: \[ \cos x = \frac{1 - \tan^2(x/2)}{1 + \tan^2(x/2)} \] Given \( \tan(x/2) = 7 \), we can substitute this into the identity: \[ \cos x = \frac{1 - 7^2}{1 + 7^2} = \frac{1 - 49}{1 + 49} = \frac{-48}{50} = -\frac{24}{25} \] ### Step 3: Substitute \( \cos x \) back into the equation Now substitute \( \cos x \) into the rearranged equation: \[ a^2 - 2a \left(-\frac{24}{25}\right) - 673 = 0 \] This simplifies to: \[ a^2 + \frac{48a}{25} - 673 = 0 \] ### Step 4: Clear the fraction by multiplying through by 25 To eliminate the fraction, multiply the entire equation by 25: \[ 25a^2 + 48a - 25 \times 673 = 0 \] Calculating \( 25 \times 673 \): \[ 25 \times 673 = 16825 \] So the equation becomes: \[ 25a^2 + 48a - 16825 = 0 \] ### Step 5: Apply the quadratic formula Using the quadratic formula \( a = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 25, b = 48, c = -16825 \): \[ b^2 - 4ac = 48^2 - 4 \times 25 \times (-16825) \] Calculating \( 48^2 \): \[ 48^2 = 2304 \] Calculating \( 4 \times 25 \times 16825 \): \[ 4 \times 25 \times 16825 = 1682500 \] So: \[ b^2 - 4ac = 2304 + 1682500 = 1684804 \] ### Step 6: Calculate the square root Now find \( \sqrt{1684804} \): \[ \sqrt{1684804} = 1298 \] ### Step 7: Substitute back into the quadratic formula Now substituting back: \[ a = \frac{-48 \pm 1298}{50} \] Calculating the two possible values: 1. \( a = \frac{-48 + 1298}{50} = \frac{1250}{50} = 25 \) 2. \( a = \frac{-48 - 1298}{50} = \frac{-1346}{50} = -26.92 \) (not an integer) ### Conclusion The integral value of \( a \) is: \[ \boxed{25} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Solved Examples : Single Option Correct Type Questions|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

Let cos(2 tan^(-1) x)=1/2 then the value of x is

If ((1+cos2x))/(sin2x)+3(1+(tanx)tan.(x)/(2))sin x=4 then the value of tanx can be equal to

If (sin^(2)x-2cos^(2)x+1)/(sin^(2)x+2cos^(2)x-1)=4 , then the value of 2 tan^(2)x is

2 tan^(-1) (cos x) = tan^(-1) (2 cosec x)

If g(x)=(4cos^4x-2cos2x-1/2cos4x-x^7)^(1/7) then the value of g(g(100)) is equal to

If the integral I=int(tanx)/(5+7tan^(2)x)dx=kln |f(x)|+C (where C is the integration constant) and f(0)=5/7 , then the value of f((pi)/(4)) is equal to

If 5(tan^2x - cos^2x)=2cos 2x + 9 , then the value of cos4x is

If 5(tan^2x - cos^2x)=2cos 2x + 9 , then the value of cos4x is

If (cos^2x+1/(cos^2x)) (1+tan^2 2y)(3+sin3z)=4, then x is an integral multiple of pi x cannot be an even multiple of pi z is an integral multiple of pi y is an integral multiple of pi/2

If cos x = - (1)/(3) , x lies in III quardrnat, then find the values of sin(x/2), cos (x/2) and tan (x/2) .

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If a^(2)-2a cos x +1=674 and tan (x/2)=7 then the integral value of a ...

    Text Solution

    |

  2. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  3. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  4. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  5. Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for theta ...

    Text Solution

    |

  6. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  7. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  8. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  9. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)^(...

    Text Solution

    |

  10. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  11. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  12. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  13. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  14. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  15. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  16. Let cos(alpha+beta)""=4/5 and let sin (alpha+beta)""=5/(13) where 0lt=...

    Text Solution

    |

  17. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  18. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  19. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  20. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |