Home
Class 12
MATHS
(sin^(3)x)/(1 + cosx) + (cos^(3)x)/(1 - ...

`(sin^(3)x)/(1 + cosx) + (cos^(3)x)/(1 - sinx) =`

A

`sqrt(2) cos [ pi/4-x]`

B

`sqrt(2) cos [ pi/4 + x]`

C

`sqrt(2) sin [ pi/4 - x]`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{\sin^3 x}{1 + \cos x} + \frac{\cos^3 x}{1 - \sin x}, \] we will simplify each term step by step. ### Step 1: Rewrite the terms We start with the expression: \[ \frac{\sin^3 x}{1 + \cos x} + \frac{\cos^3 x}{1 - \sin x}. \] ### Step 2: Factor the cubes We can use the identity \( a^3 + b^3 = (a + b)(a^2 - ab + b^2) \) to factor the terms. Here, we can express \(\sin^3 x\) and \(\cos^3 x\) in a useful form. ### Step 3: Combine the fractions To combine these fractions, we need a common denominator. The common denominator will be \((1 + \cos x)(1 - \sin x)\). Thus, we rewrite the expression as: \[ \frac{\sin^3 x (1 - \sin x) + \cos^3 x (1 + \cos x)}{(1 + \cos x)(1 - \sin x)}. \] ### Step 4: Expand the numerator Now, we expand the numerator: \[ \sin^3 x (1 - \sin x) = \sin^3 x - \sin^4 x, \] \[ \cos^3 x (1 + \cos x) = \cos^3 x + \cos^4 x. \] Combining these gives us: \[ \sin^3 x - \sin^4 x + \cos^3 x + \cos^4 x. \] ### Step 5: Use the Pythagorean identity Recall that \(\sin^2 x + \cos^2 x = 1\). We can express \(\sin^4 x\) and \(\cos^4 x\) in terms of \(\sin^2 x\) and \(\cos^2 x\): \[ \sin^4 x = (\sin^2 x)^2, \] \[ \cos^4 x = (\cos^2 x)^2. \] ### Step 6: Combine like terms We can now combine the terms: \[ \sin^3 x + \cos^3 x - \sin^4 x + \cos^4 x = (\sin^3 x + \cos^3 x) + (\cos^4 x - \sin^4 x). \] ### Step 7: Factor the cubes and squares Using the identity for cubes and the difference of squares: \[ \sin^3 x + \cos^3 x = (\sin x + \cos x)(\sin^2 x - \sin x \cos x + \cos^2 x), \] and \[ \cos^4 x - \sin^4 x = (\cos^2 x - \sin^2 x)(\cos^2 x + \sin^2 x) = (\cos^2 x - \sin^2 x)(1). \] ### Step 8: Substitute back into the expression Now we substitute back into our expression: \[ \frac{(\sin x + \cos x)(1 - \sin x \cos x) + (\cos^2 x - \sin^2 x)}{(1 + \cos x)(1 - \sin x)}. \] ### Step 9: Final simplification We can simplify further if needed, but this gives us a clear expression. Thus, the final answer is: \[ \frac{(\sin x + \cos x)(1 - \sin x \cos x) + (\cos^2 x - \sin^2 x)}{(1 + \cos x)(1 - \sin x)}. \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Solved Examples : Single Option Correct Type Questions|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

(cos^3x-sin^3x)/(cosx-sinx)

The period of f(x)=(1)/(2){(| sinx|)/(cos x)+(|cosx|)/(sinx)} , is

The period of f(x)=(1)/(2){(| sinx|)/(cos x)-(|cosx|)/(sinx)} , is

If p(x)=sinx(sin^3x+3)+cosx(cos^3x+4)+(1/2)sin^2 2x+5, then find the range of p(x)dot

Find the number of solution of the equations sin^3 x cos x + sin^(2) x* cos^(2) x+sinx * cos^(3) x=1 , when x in[0,2pi]

Show that, sin3x + cos3x = (cosx-sinx)(1+4sinx cosx)

If 0ltxlt(pi)/(2) then the minimum value of (cos^(3)x)/(sinx)+(sin^(3))/(cosx)(x)/(x) , is

If 3f(cosx)+2f(sinx)=5x , then f^(')(cosx) is equal to (where f^(') denotes derivative with respect to x ) (A) −1/(cosx) (B) 1/(cosx) (C) -1/(sinx) (D) 1/(sinx)

Prove that: (sinx)/(cos3x)+(sin3x)/(cos9x)+(sin9x)/(cos27 x)=(1/2)(tan27 x-tanx)

Prove that: (sinx)/(cos3x)+(sin3x)/(cos9x)+(sin9x)/(cos27 x)=(1/2)(tan27 x-tanx)

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. (sin^(3)x)/(1 + cosx) + (cos^(3)x)/(1 - sinx) =

    Text Solution

    |

  2. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  3. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  4. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  5. Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for theta ...

    Text Solution

    |

  6. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  7. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  8. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  9. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)^(...

    Text Solution

    |

  10. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  11. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  12. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  13. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  14. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  15. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  16. Let cos(alpha+beta)""=4/5 and let sin (alpha+beta)""=5/(13) where 0lt=...

    Text Solution

    |

  17. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  18. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  19. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  20. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |