Home
Class 12
MATHS
Let 0 lt=thetalt=pi/2 and x=X cos theta+...

Let `0 lt=thetalt=pi/2 and x=X cos theta+Y sin theta, y=X sin theta-Y cos theta` such that `x^2+2xy+y^2=aX^2+bY^2,` where a and b are constant, then

A

`a=-1, b=-3`

B

`theta=pi/2`

C

`a=2, b=0`

D

`theta=pi/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations and manipulate them step by step. ### Step 1: Write the given equations We have: - \( x = X \cos \theta + Y \sin \theta \) - \( y = X \sin \theta - Y \cos \theta \) We need to analyze the expression: \[ x^2 + 2xy + y^2 = aX^2 + bY^2 \] ### Step 2: Substitute \( x \) and \( y \) into the equation Substituting the values of \( x \) and \( y \) into the left-hand side: \[ x^2 + 2xy + y^2 = (X \cos \theta + Y \sin \theta)^2 + 2(X \cos \theta + Y \sin \theta)(X \sin \theta - Y \cos \theta) + (X \sin \theta - Y \cos \theta)^2 \] ### Step 3: Expand the terms Now we expand each term: 1. \( (X \cos \theta + Y \sin \theta)^2 = X^2 \cos^2 \theta + 2XY \cos \theta \sin \theta + Y^2 \sin^2 \theta \) 2. \( (X \sin \theta - Y \cos \theta)^2 = X^2 \sin^2 \theta - 2XY \sin \theta \cos \theta + Y^2 \cos^2 \theta \) 3. \( 2(X \cos \theta + Y \sin \theta)(X \sin \theta - Y \cos \theta) = 2(X^2 \cos \theta \sin \theta - Y^2 \sin \theta \cos \theta + XY (\sin^2 \theta - \cos^2 \theta)) \) ### Step 4: Combine all the expanded terms Combining all the terms gives: \[ x^2 + 2xy + y^2 = (X^2 \cos^2 \theta + Y^2 \sin^2 \theta + 2XY \cos \theta \sin \theta) + (X^2 \sin^2 \theta + Y^2 \cos^2 \theta - 2XY \sin \theta \cos \theta) + 2(X^2 \cos \theta \sin \theta - Y^2 \sin \theta \cos \theta + XY (\sin^2 \theta - \cos^2 \theta)) \] ### Step 5: Simplify the expression Now we simplify: \[ = X^2 (\cos^2 \theta + \sin^2 \theta) + Y^2 (\sin^2 \theta + \cos^2 \theta) + 2XY (\cos \theta \sin \theta - \sin \theta \cos \theta + \sin^2 \theta - \cos^2 \theta) \] Using the identity \( \cos^2 \theta + \sin^2 \theta = 1 \): \[ = X^2 + Y^2 + 2XY (\sin^2 \theta - \cos^2 \theta) \] ### Step 6: Set the equation equal to the right-hand side Now we have: \[ X^2 + Y^2 + 2XY (\sin^2 \theta - \cos^2 \theta) = aX^2 + bY^2 \] ### Step 7: Compare coefficients From here, we can compare coefficients: 1. Coefficient of \( X^2 \): \( 1 = a \) 2. Coefficient of \( Y^2 \): \( 1 = b \) 3. Coefficient of \( XY \): \( 2(\sin^2 \theta - \cos^2 \theta) = 0 \) ### Step 8: Solve for \( \theta \) The equation \( 2(\sin^2 \theta - \cos^2 \theta) = 0 \) implies: \[ \sin^2 \theta = \cos^2 \theta \implies \tan^2 \theta = 1 \implies \theta = \frac{\pi}{4} \] ### Step 9: Determine constants \( a \) and \( b \) From the comparisons: - \( a = 1 \) - \( b = 1 \) ### Final Result Thus, we conclude: - \( a = 1 \) - \( b = 1 \) - \( \theta = \frac{\pi}{4} \)
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Solved Examples : Single Option Correct Type Questions|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

If x = X cos theta- Y sin theta, y = X sin theta + Y cos theta and x^2 + 4 x y + y^2 = A X^2 + B Y^2 0 <= theta <= pi/2, then

If x/a cos theta + y/b sin theta = 1 , x/a sin theta - y/b cos theta = 1 then x^2/a^2 + y^2/b^2 =

if x = "cos" theta - "cos" 2 theta, y = "sin" theta - "sin" 2 theta , then dy/dx is

Find (dy)/(dx) if x= 3 cos theta - cos 2theta and y= sin theta - sin 2theta.

If x = 3 cos theta - 2 cos^3 theta,y = 3 sin theta - 2 sin^3 theta , then dy/dx is

Find (dy)/(dx) if x=cos theta - cos 2 theta and" "y = sin theta - sin 2theta

cos theta + sin theta - sin 2 theta = (1)/(2), 0 lt theta lt (pi)/(2)

Show that equations x=a cos theta + b sin theta, y = a sin theta - b cos theta represents a circle, wheter theta is a parameter.

Let x= cos theta and y = sin theta for any real value theta . Then x^(2)+y^(2)=

If x= a sin 2theta (1+ cos 2theta) , y= b cos 2theta(1- cos 2theta) , then (dy)/(dx) =

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Let 0 lt=thetalt=pi/2 and x=X cos theta+Y sin theta, y=X sin theta-Y c...

    Text Solution

    |

  2. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  3. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  4. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  5. Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for theta ...

    Text Solution

    |

  6. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  7. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  8. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  9. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)^(...

    Text Solution

    |

  10. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  11. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  12. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  13. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  14. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  15. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  16. Let cos(alpha+beta)""=4/5 and let sin (alpha+beta)""=5/(13) where 0lt=...

    Text Solution

    |

  17. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  18. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  19. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  20. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |