Home
Class 12
MATHS
If a=sin, pi/18 sin (5pi)/18 si, (7pi)/1...

If `a=sin, pi/18 sin (5pi)/18 si, (7pi)/18, and x` is the solution of the equation `y=2[x]+2 and y=3[x-2], where [x]` denotes the interal part of x then a= (A) [x] (B) `1/[x]` (C) 2[x] (D) `[x]^2`

A

`[x]`

B

`(1)/([x])`

C

`2[x]`

D

`[x]^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a \) given by the product of certain sine functions, and then determine the relationship between \( a \) and \( [x] \), where \( [x] \) denotes the greatest integer less than or equal to \( x \). ### Step-by-Step Solution: 1. **Calculate \( a \)**: We are given: \[ a = \sin\left(\frac{\pi}{18}\right) \cdot \sin\left(\frac{5\pi}{18}\right) \cdot \sin\left(\frac{7\pi}{18}\right) \] 2. **Use the sine product-to-sum identities**: We can simplify the product of sine functions. We will use the identity: \[ \sin A \cdot \sin B = \frac{1}{2} [\cos(A-B) - \cos(A+B)] \] Let's first calculate \( \sin\left(\frac{5\pi}{18}\right) \) using the complementary angle: \[ \sin\left(\frac{5\pi}{18}\right) = \cos\left(\frac{\pi}{2} - \frac{5\pi}{18}\right) = \cos\left(\frac{9\pi}{18} - \frac{5\pi}{18}\right) = \cos\left(\frac{4\pi}{18}\right) = \cos\left(\frac{2\pi}{9}\right) \] Now we can rewrite \( a \): \[ a = \sin\left(\frac{\pi}{18}\right) \cdot \cos\left(\frac{2\pi}{9}\right) \cdot \sin\left(\frac{7\pi}{18}\right) \] 3. **Multiply by \( 2 \cos\left(\frac{\pi}{18}\right) \)**: We can use the double angle identity: \[ 2 \sin A \cos A = \sin(2A) \] This gives us: \[ 2 \sin\left(\frac{\pi}{18}\right) \cos\left(\frac{\pi}{18}\right) = \sin\left(\frac{2\pi}{18}\right) = \sin\left(\frac{\pi}{9}\right) \] 4. **Continue simplifying**: We can continue this process to express \( a \) in terms of sine functions. After several steps of simplification, we find that: \[ a = \frac{1}{8} \] 5. **Solve for \( [x] \)**: We are given the equations: \[ y = 2[x] + 2 \quad \text{and} \quad y = 3[x - 2] \] Setting them equal to each other: \[ 2[x] + 2 = 3[x] - 6 \] Rearranging gives: \[ 3[x] - 2[x] = 8 \implies [x] = 8 \] 6. **Relate \( a \) and \( [x] \)**: Since we found \( a = \frac{1}{8} \) and \( [x] = 8 \), we can express \( a \) in terms of \( [x] \): \[ a = \frac{1}{[x]} \] ### Conclusion: Thus, the correct option for \( a \) is: \[ \text{(B) } \frac{1}{[x]} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Solved Examples : Single Option Correct Type Questions|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

The period of the function f(x)=cos2pi{2x}+ sin2 pi {2x} , is ( where {x} denotes the functional part of x)

The period of the function f(x)=cos2pi{2x}-sin2 pi {2x} , is ( where {x} denotes the functional part of x)

The period of function 2^({x}) +sin pi x+3^({x//2})+cos pi x (where {x} denotes the fractional part of x) is

The number of solutions of the equation 3"sin"^(2) x - 7"sin" x +2 = 0 in the interval [0, 5 pi] , is

The solution(s) of the equation cos2x sin6x=cos3x sin5x in the interval [0,pi] is/are pi/6 (b) pi/2 (c) (2pi)/3 (d) (5pi)/6

Find the number of solution of the equations 2^(cos x)=|sin x|, when x in[-2pi,2pi]

The number of solutions of the equation sin x . Sin 2x. Sin 3x=1 in [0,2pi] is

If x+y=(4pi)/(3) and sin x = 2 sin y , then

The number of solutions of [sin x+ cos x]=3+ [- sin x]+[-cos x] (where [.] denotes the greatest integer function), x in [0, 2pi] , is

If x in [-(5pi)/2,(5pi)/2] , then the greatest positive solution of 1+sin^4x=cos^2 3x is -

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If a=sin, pi/18 sin (5pi)/18 si, (7pi)/18, and x is the solution of th...

    Text Solution

    |

  2. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  3. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  4. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  5. Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for theta ...

    Text Solution

    |

  6. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  7. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  8. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  9. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)^(...

    Text Solution

    |

  10. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  11. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  12. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  13. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  14. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  15. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  16. Let cos(alpha+beta)""=4/5 and let sin (alpha+beta)""=5/(13) where 0lt=...

    Text Solution

    |

  17. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  18. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  19. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  20. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |