Home
Class 12
MATHS
If the mapping f(x)=ax+b,a lt0 and maps ...

If the mapping `f(x)=ax+b,a lt0` and maps [-1, 1] onto [0, 2] , then for all values of `theta, A=cos^(2) theta + sin^(4) theta` is such that

A

`f(1/4) le A le f(0)`

B

`f(0) le A le f(-2)`

C

`f(1/3) le A le f(0)`

D

`f(-1) lt A le f (-2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = ax + b \) where \( a < 0 \) and it maps the interval \([-1, 1]\) onto \([0, 2]\). We will also explore the expression \( A = \cos^2 \theta + \sin^4 \theta \). ### Step 1: Determine the values of \( a \) and \( b \) Given that \( f(x) \) maps \([-1, 1]\) onto \([0, 2]\), we can set up the following equations based on the endpoints of the intervals: 1. When \( x = -1 \), \( f(-1) = 0 \): \[ 0 = -a + b \quad \text{(1)} \] 2. When \( x = 1 \), \( f(1) = 2 \): \[ 2 = a + b \quad \text{(2)} \] ### Step 2: Solve the system of equations From equation (1), we can express \( b \) in terms of \( a \): \[ b = a \quad \text{(from 1)} \] Substituting \( b = a \) into equation (2): \[ 2 = a + a \\ 2 = 2a \\ a = 1 \] However, since \( a < 0 \), we must have made an error in interpreting the conditions. Let's correct this: From equation (1): \[ b = a \quad \text{(1)} \] Substituting \( b \) into equation (2): \[ 2 = a + a \\ 2 = 2a \\ a = 1 \quad \text{(not valid since \( a < 0 \))} \] Instead, we should have: 1. From (1): \( b = a + 0 \) 2. From (2): \( b = 2 - a \) Setting these equal gives: \[ a = 2 - a \\ 2a = 2 \\ a = -1 \] Substituting \( a = -1 \) back into \( b = -a \): \[ b = 1 \] Thus, the function is: \[ f(x) = -x + 1 \] ### Step 3: Analyze \( A = \cos^2 \theta + \sin^4 \theta \) Now we need to analyze the expression \( A = \cos^2 \theta + \sin^4 \theta \). Using the identity \( \cos^2 \theta = 1 - \sin^2 \theta \): \[ A = (1 - \sin^2 \theta) + \sin^4 \theta \\ A = 1 - \sin^2 \theta + \sin^4 \theta \] Let \( y = \sin^2 \theta \), then: \[ A = 1 - y + y^2 \] ### Step 4: Find the maximum and minimum values of \( A \) To find the maximum and minimum values of \( A \), we can differentiate: \[ \frac{dA}{dy} = -1 + 2y \] Setting the derivative to zero: \[ -1 + 2y = 0 \\ 2y = 1 \\ y = \frac{1}{2} \] Now, we evaluate \( A \) at \( y = 0 \), \( y = 1 \), and \( y = \frac{1}{2} \): 1. \( A(0) = 1 - 0 + 0 = 1 \) 2. \( A(1) = 1 - 1 + 1 = 1 \) 3. \( A\left(\frac{1}{2}\right) = 1 - \frac{1}{2} + \left(\frac{1}{2}\right)^2 = 1 - \frac{1}{2} + \frac{1}{4} = \frac{3}{4} \) ### Conclusion The minimum value of \( A \) is \( \frac{3}{4} \) and the maximum value is \( 1 \). Thus, \( A \) lies between \( \frac{3}{4} \) and \( 1 \).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Solved Examples : Single Option Correct Type Questions|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

Prove that 1-cos^(2)theta-sin^(2)theta=0

Range of f(theta)=cos^2theta(cos^2theta+1)+2sin^2theta is

If cos theta+cos^(2)theta=1 , the value of sin^(2)theta+sin^(4)theta is

If A = sin^2 theta+ cos^4 theta , then for all real values of theta

Solve 5 cos 2 theta+2 "cos"^(2) theta/2 +1=0, -pi lt theta lt pi .

If (sin 3theta)/(cos 2theta)lt 0 , then theta lies in

2(sin^(6) theta + cos^(6)theta) - 3(sin^(4)theta + cos^(4)theta)+ 1 = 0

Solve for theta(0^(@) lt theta lt 90^(@)) : sin^(2)theta-1/2sintheta=0

Solve for theta(0^(@) lt theta lt 90^(@)) : sin^(2)theta-1/2sintheta=0

Solve for theta (0^(@) lt theta lt 90 ^(@)) 2 sin ^(2) theta = (1)/(2)

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If the mapping f(x)=ax+b,a lt0 and maps [-1, 1] onto [0, 2] , then for...

    Text Solution

    |

  2. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  3. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  4. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  5. Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for theta ...

    Text Solution

    |

  6. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  7. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  8. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  9. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)^(...

    Text Solution

    |

  10. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  11. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  12. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  13. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  14. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  15. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  16. Let cos(alpha+beta)""=4/5 and let sin (alpha+beta)""=5/(13) where 0lt=...

    Text Solution

    |

  17. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  18. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  19. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  20. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |