Home
Class 12
MATHS
If 0 < x < pi and cosx + sinx = 1/2 the...

If ` 0 < x < pi` and `cosx + sinx = 1/2` then ` tanx =`

A

`(4-sqrt(7))/(3)`

B

`(4+sqrt(7))/(3)`

C

`(-(4+sqrt(7)))/(3)`

D

`(-4+sqrt(7))/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \tan x \) given that \( \cos x + \sin x = \frac{1}{2} \) and \( 0 < x < \pi \). ### Step-by-Step Solution: 1. **Start with the given equation:** \[ \cos x + \sin x = \frac{1}{2} \] 2. **Square both sides:** \[ (\cos x + \sin x)^2 = \left(\frac{1}{2}\right)^2 \] This expands to: \[ \cos^2 x + \sin^2 x + 2 \sin x \cos x = \frac{1}{4} \] 3. **Use the Pythagorean identity:** Since \( \cos^2 x + \sin^2 x = 1 \), we can substitute this into the equation: \[ 1 + 2 \sin x \cos x = \frac{1}{4} \] 4. **Rearrange the equation:** \[ 2 \sin x \cos x = \frac{1}{4} - 1 \] \[ 2 \sin x \cos x = -\frac{3}{4} \] 5. **Recognize that \( \sin 2x = 2 \sin x \cos x \):** \[ \sin 2x = -\frac{3}{4} \] 6. **Express \( \sin 2x \) in terms of \( \tan x \):** We know that: \[ \sin 2x = \frac{2 \tan x}{1 + \tan^2 x} \] Therefore, we can set up the equation: \[ \frac{2 \tan x}{1 + \tan^2 x} = -\frac{3}{4} \] 7. **Cross-multiply to eliminate the fraction:** \[ 2 \tan x = -\frac{3}{4}(1 + \tan^2 x) \] \[ 2 \tan x = -\frac{3}{4} - \frac{3}{4} \tan^2 x \] 8. **Rearrange the equation:** Multiply through by 4 to eliminate the fraction: \[ 8 \tan x = -3 - 3 \tan^2 x \] Rearranging gives: \[ 3 \tan^2 x + 8 \tan x + 3 = 0 \] 9. **Use the quadratic formula to solve for \( \tan x \):** The quadratic formula is given by: \[ \tan x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 3 \), \( b = 8 \), and \( c = 3 \): \[ \tan x = \frac{-8 \pm \sqrt{8^2 - 4 \cdot 3 \cdot 3}}{2 \cdot 3} \] \[ \tan x = \frac{-8 \pm \sqrt{64 - 36}}{6} \] \[ \tan x = \frac{-8 \pm \sqrt{28}}{6} \] \[ \tan x = \frac{-8 \pm 2\sqrt{7}}{6} \] Simplifying gives: \[ \tan x = \frac{-4 \pm \sqrt{7}}{3} \] 10. **Determine the valid solution based on the quadrant:** Since \( 0 < x < \pi \), we need to check the signs of \( \tan x \): - In the first quadrant \( (0, \frac{\pi}{2}) \), \( \tan x \) is positive. - In the second quadrant \( (\frac{\pi}{2}, \pi) \), \( \tan x \) is negative. Thus, we take the negative solution: \[ \tan x = \frac{-4 - \sqrt{7}}{3} \] ### Final Answer: \[ \tan x = \frac{-4 - \sqrt{7}}{3} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Solved Examples : Single Option Correct Type Questions|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

Which of the following is (are) NOT the square of a 3xx3 matrix with real entries? [1 0 0 0 1 0 0 0-1] (b) [-1 0 0 0-1 0 0 0-1] [1 0 0 0 1 0 0 0 1] (d) [1 0 0 0-1 0 0 0-1]

If x ,\ y ,\ z are non-zero real numbers, then the inverse of the matrix A=[[x,0, 0],[ 0,y,0],[ 0, 0,z]] , is (a) [[x^(-1),0 ,0 ],[0,y^(-1),0],[ 0, 0,z^(-1)]] (b) x y z[[x^(-1),0 ,0],[ 0,y^(-1),0],[ 0, 0,z^(-1)]] (c) 1/(x y z)[[x,0, 0],[ 0,y,0],[ 0, 0,z]] (d) 1/(x y z)[[1, 0, 0],[ 0 ,1, 0],[ 0, 0, 1]]

If x, y, z are non-zero real numbers, then the inverse of matrix A=[(x,0, 0) ,(0,y,0),( 0, 0,z)] is (A) [[x^(-1),0,0],[0,y^(-1),0],[0,0,z^(-1)]] (B) xyz[[x^(-1),0,0],[0,y^(-1),0],[0,0,z^(-1)]] (C) (1)/(xyz)[[x,0,0],[0,y,0],[0,0,z]] (D) (1)/(xyz)[[1,0,0],[0,1,0],[0,0,1]]

Find the lengths of the medians of the triangle A (0, 0, 6),B (0, 4,0) and C (6,0,0)

If a plane through the points (2,0,0) , (0,3,0) AND (0,0,4) the equation of plane is "_______."

Find the lengths of the medians of the triangle with vertices A (0, 0, 6) , B (0, 4, 0) and (6, 0, 0) .

If A is a square matrix such that A*(AdjA)=[{:(4,0,0),(0,4,0),(0,0,4):}] , then

The value of 0. 23 +\ 0. 22 is (a) 0. 45 \ (b) 0. 43 \ (c) 0. 47 \ (d) 0. 41

If A is a square matrix of order 3 such that A("adj A")=[(-3,0,0),(0,-3,0),(0,0,-3)] , then |A| is equal to

If A is a square matrix of order 3 such that A (adj A) =[(-2,0,0),(0,-2,0),(0,0,-2)] , then |adj A| is equal to

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If 0 < x < pi and cosx + sinx = 1/2 then tanx =

    Text Solution

    |

  2. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  3. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  4. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  5. Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for theta ...

    Text Solution

    |

  6. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  7. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  8. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  9. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)^(...

    Text Solution

    |

  10. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  11. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  12. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  13. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  14. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  15. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  16. Let cos(alpha+beta)""=4/5 and let sin (alpha+beta)""=5/(13) where 0lt=...

    Text Solution

    |

  17. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  18. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  19. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  20. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |