Home
Class 12
MATHS
In DeltaABC, tan B + tanC=5 and tan Atan...

In `DeltaABC, tan B + tanC=5` and `tan AtanC=3`, then

A

`DeltaABC` is an acute angled triangle

B

`DeltaABC` is an obtuse angled triangle

C

sum of all possible values of `tanA` is 10

D

sum of all possible values of tan A is 9

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will use the given information about triangle \( ABC \) and the relationships between the tangents of the angles. ### Step-by-Step Solution: 1. **Write down the given equations:** We are given: \[ \tan B + \tan C = 5 \quad \text{(1)} \] \[ \tan A \tan C = 3 \quad \text{(2)} \] 2. **Use the identity for the sum of tangents in a triangle:** In any triangle, the following identity holds: \[ \tan A + \tan B + \tan C = \tan A \tan B \tan C \quad \text{(3)} \] 3. **Substitute the known values into the identity:** From equation (1), we can express \( \tan B + \tan C \) as 5. Thus, we can rewrite equation (3) as: \[ \tan A + 5 = \tan A \tan B \tan C \] 4. **Express \( \tan B \) in terms of \( \tan C \):** From equation (1), we can express \( \tan B \): \[ \tan B = 5 - \tan C \quad \text{(4)} \] 5. **Substitute \( \tan B \) into the identity:** Substitute equation (4) into equation (3): \[ \tan A + 5 = \tan A (5 - \tan C) \tan C \] 6. **Substitute \( \tan C \) from equation (2):** From equation (2), we have \( \tan C = \frac{3}{\tan A} \). Substitute this into the equation: \[ \tan A + 5 = \tan A \left(5 - \frac{3}{\tan A}\right) \cdot \frac{3}{\tan A} \] 7. **Simplify the equation:** This simplifies to: \[ \tan A + 5 = \frac{3(5\tan A - 3)}{\tan A} \] Multiply through by \( \tan A \) to eliminate the fraction: \[ \tan^2 A + 5\tan A = 15\tan A - 9 \] 8. **Rearrange to form a quadratic equation:** Rearranging gives us: \[ \tan^2 A - 10\tan A + 9 = 0 \] 9. **Solve the quadratic equation:** We can use the quadratic formula \( \tan A = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 1, b = -10, c = 9 \): \[ \tan A = \frac{10 \pm \sqrt{(-10)^2 - 4 \cdot 1 \cdot 9}}{2 \cdot 1} \] \[ \tan A = \frac{10 \pm \sqrt{100 - 36}}{2} = \frac{10 \pm \sqrt{64}}{2} = \frac{10 \pm 8}{2} \] This gives us two solutions: \[ \tan A = \frac{18}{2} = 9 \quad \text{or} \quad \tan A = \frac{2}{2} = 1 \] 10. **Determine \( \tan B \) and \( \tan C \) for each case:** - If \( \tan A = 9 \): \[ \tan C = \frac{3}{9} = \frac{1}{3} \] \[ \tan B = 5 - \tan C = 5 - \frac{1}{3} = \frac{15 - 1}{3} = \frac{14}{3} \] - If \( \tan A = 1 \): \[ \tan C = \frac{3}{1} = 3 \] \[ \tan B = 5 - \tan C = 5 - 3 = 2 \] 11. **Check the angles:** - For \( \tan A = 9 \), \( \tan B = \frac{14}{3} \), \( \tan C = \frac{1}{3} \): All angles are acute. - For \( \tan A = 1 \), \( \tan B = 2 \), \( \tan C = 3 \): All angles are acute. ### Final Answers: The possible values of \( \tan A \) are \( 1 \) and \( 9 \). The sum of all possible values of \( \tan A \) is \( 10 \).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Solved Examples : Single Option Correct Type Questions|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

If in DeltaABC, tan A+tanB+tanC=6 and tanA tanB=2 , then sin^(2)A:sin^(2)B:sin^(2)C is

In a triangle tan A+ tan B + tan C=6 and tan A tan B= 2, then the values of tan A, tan B and tan C are

In DeltaABC , tanA+tanB+tanC=tanAtanBtanC

If A, B, C are angles of Delta ABC and tan A tan C = 3, tan B tan C = 6 , then

If in DeltaABC, (tan A - tan B)/(tan A + tan B) = (c-b)/c , prove that : A = 60^0 .

If Delta ABC , if tan A + tan B + tan C = 3sqrt(3) , then the triangle is :

Statement I The triangle so obtained is an equilateral triangle. Statement II If roots of the equations be tan A, tan B and tanC then tan A + tanB+tanC=3sqrt (3)

Statement-1: In an acute angled triangle minimum value of tan alpha + tanbeta + tan gamma is 3sqrt(3) . And Statement-2: If a,b,c are three positive real numbers then (a+b+c)/3 ge sqrt(abc) into in a triangleABC , tanA+ tanB + tanC= tanA. tanB.tanC

In a DeltaABC , prove that : tanA+tanB+tanC= tanA tanB tanC

In a DeltaABC , prove that : tanA+tanB+tanC= tanA tanB tanC

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. In DeltaABC, tan B + tanC=5 and tan AtanC=3, then

    Text Solution

    |

  2. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  3. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  4. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  5. Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for theta ...

    Text Solution

    |

  6. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  7. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  8. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  9. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)^(...

    Text Solution

    |

  10. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  11. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  12. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  13. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  14. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  15. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  16. Let cos(alpha+beta)""=4/5 and let sin (alpha+beta)""=5/(13) where 0lt=...

    Text Solution

    |

  17. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  18. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  19. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  20. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |