Home
Class 12
MATHS
If in DeltaABC, tan A+tanB+tanC=6 and ta...

If in `DeltaABC, tan A+tanB+tanC=6` and `tanA tanB=2`, then `sin^(2)A:sin^(2)B:sin^(2)C` is

A

`8:9:5`

B

`8:5:9`

C

`5:9:5`

D

`5:8:5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will use the given information about the triangle \( \Delta ABC \) and the properties of trigonometric functions. ### Step 1: Use the given information We are given: 1. \( \tan A + \tan B + \tan C = 6 \) 2. \( \tan A \tan B = 2 \) Since \( A + B + C = 180^\circ \) in a triangle, we can use the identity: \[ \tan A + \tan B + \tan C = \tan A \tan B \tan C \] This means: \[ 6 = 2 \tan C \] From this, we can solve for \( \tan C \): \[ \tan C = \frac{6}{2} = 3 \] ### Step 2: Find \( \tan A \) and \( \tan B \) Now we know \( \tan C = 3 \). We can substitute this back into the equation for \( \tan A + \tan B \): \[ \tan A + \tan B = 6 - \tan C = 6 - 3 = 3 \] Now we have two equations: 1. \( \tan A + \tan B = 3 \) 2. \( \tan A \tan B = 2 \) Let \( \tan A = x \) and \( \tan B = y \). Thus, we have: \[ x + y = 3 \] \[ xy = 2 \] ### Step 3: Form a quadratic equation We can form a quadratic equation using these two equations: \[ t^2 - (x+y)t + xy = 0 \] Substituting the values: \[ t^2 - 3t + 2 = 0 \] ### Step 4: Solve the quadratic equation Now we can solve this quadratic equation using the quadratic formula: \[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1, b = -3, c = 2 \): \[ t = \frac{3 \pm \sqrt{(-3)^2 - 4 \cdot 1 \cdot 2}}{2 \cdot 1} = \frac{3 \pm \sqrt{9 - 8}}{2} = \frac{3 \pm 1}{2} \] This gives us: \[ t = \frac{4}{2} = 2 \quad \text{or} \quad t = \frac{2}{2} = 1 \] Thus, \( \tan A = 2 \) and \( \tan B = 1 \) (or vice versa). ### Step 5: Find \( \sin^2 A, \sin^2 B, \sin^2 C \) Now we can find \( \sin^2 A, \sin^2 B, \sin^2 C \) using the relationship: \[ \sin^2 \theta = \frac{\tan^2 \theta}{1 + \tan^2 \theta} \] Calculating for \( A \): \[ \sin^2 A = \frac{\tan^2 A}{1 + \tan^2 A} = \frac{2^2}{1 + 2^2} = \frac{4}{5} \] Calculating for \( B \): \[ \sin^2 B = \frac{\tan^2 B}{1 + \tan^2 B} = \frac{1^2}{1 + 1^2} = \frac{1}{2} \] Calculating for \( C \): \[ \sin^2 C = \frac{\tan^2 C}{1 + \tan^2 C} = \frac{3^2}{1 + 3^2} = \frac{9}{10} \] ### Step 6: Find the ratio \( \sin^2 A : \sin^2 B : \sin^2 C \) We have: - \( \sin^2 A = \frac{4}{5} \) - \( \sin^2 B = \frac{1}{2} \) - \( \sin^2 C = \frac{9}{10} \) To find the ratio, we can express them with a common denominator. The least common multiple of \( 5, 2, \) and \( 10 \) is \( 10 \): - \( \sin^2 A = \frac{4}{5} = \frac{8}{10} \) - \( \sin^2 B = \frac{1}{2} = \frac{5}{10} \) - \( \sin^2 C = \frac{9}{10} \) Thus, the ratio is: \[ \sin^2 A : \sin^2 B : \sin^2 C = 8 : 5 : 9 \] ### Final Answer The ratio \( \sin^2 A : \sin^2 B : \sin^2 C \) is \( 8 : 5 : 9 \).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Solved Examples : Single Option Correct Type Questions|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

In DeltaABC , tanA+tanB+tanC=tanAtanBtanC

In a DeltaABC , prove that : tanA+tanB+tanC= tanA tanB tanC

In a DeltaABC , prove that : tanA+tanB+tanC= tanA tanB tanC

In a DeltaABC , if tanA/2=5/6 and tanB/2=20/37 then tanC/2=

In triangle A B C ,tanA+tanB+tanC=6a n dtanAtanB=2, then the values of tanA ,tanB ,tanC are, respectively (a) 1,2,3 (b) 3,2//3,7//3 (c) 4,1//2 ,3//2 (d) none of these

In DeltaABC , prove that: sin^(2)A+sin^(2)B+sin^(2)C =2+2cosAcosBcosC.

In any DeltaABC, sum a^(2) (sin^2 B - sin^2 C) =

Let triangle ABC be right angled at C.If tanA+tanB=2 , then-

If A+B+C= pi/2 , show that : tanA tanB + tanB tanC + tanC tanA=1

In a DeltaABC, if tanA+2tanB=0, then which one is correct?

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If in DeltaABC, tan A+tanB+tanC=6 and tanA tanB=2, then sin^(2)A:sin^(...

    Text Solution

    |

  2. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  3. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  4. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  5. Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for theta ...

    Text Solution

    |

  6. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  7. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  8. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  9. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)^(...

    Text Solution

    |

  10. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  11. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  12. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  13. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  14. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  15. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  16. Let cos(alpha+beta)""=4/5 and let sin (alpha+beta)""=5/(13) where 0lt=...

    Text Solution

    |

  17. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  18. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  19. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  20. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |