Home
Class 12
MATHS
If tantheta=(xsinphi)/(1-xcosphi) and ta...

If `tantheta=(xsinphi)/(1-xcosphi) and tanphi=(ysintheta)/(1-ycostheta),` then `x/y=` (A) `sinphi/sintheta` (B) `sintheta/sinphi` (C) `sinphi/(1-costheta)` (D) `sintheta/(1-cosphi)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we start with the two equations provided: 1. \( \tan \theta = \frac{x \sin \phi}{1 - x \cos \phi} \) 2. \( \tan \phi = \frac{y \sin \theta}{1 - y \cos \theta} \) We need to find the value of \( \frac{x}{y} \). ### Step 1: Rewrite the first equation in terms of cotangent From the first equation, we can express \( \tan \theta \) as follows: \[ \tan \theta = \frac{x \sin \phi}{1 - x \cos \phi} \] Taking the cotangent of both sides, we have: \[ \cot \theta = \frac{1 - x \cos \phi}{x \sin \phi} \] ### Step 2: Rearranging the cotangent expression We can rewrite the cotangent expression: \[ \cot \theta = \frac{1}{x \sin \phi} - \frac{\cos \phi}{\sin \phi} \] This simplifies to: \[ \cot \theta + \frac{\cos \phi}{\sin \phi} = \frac{1}{x \sin \phi} \] ### Step 3: Write this as an equation Now we can express this as: \[ \cot \theta + \cot \phi = \frac{1}{x \sin \phi} \] ### Step 4: Rewrite the second equation in terms of cotangent Now, let's work with the second equation: \[ \tan \phi = \frac{y \sin \theta}{1 - y \cos \theta} \] Taking the cotangent, we get: \[ \cot \phi = \frac{1 - y \cos \theta}{y \sin \theta} \] ### Step 5: Rearranging the second cotangent expression Similar to the first equation, we can rearrange this: \[ \cot \phi = \frac{1}{y \sin \theta} - \frac{\cos \theta}{\sin \theta} \] This leads to: \[ \cot \phi + \cot \theta = \frac{1}{y \sin \theta} \] ### Step 6: Equating the two expressions From the two equations we derived, we have: \[ \frac{1}{x \sin \phi} = \cot \theta + \cot \phi \] and \[ \frac{1}{y \sin \theta} = \cot \theta + \cot \phi \] Since both expressions equal \( \cot \theta + \cot \phi \), we can set them equal to each other: \[ \frac{1}{x \sin \phi} = \frac{1}{y \sin \theta} \] ### Step 7: Cross-multiplying to find \( \frac{x}{y} \) Cross-multiplying gives us: \[ y \sin \theta = x \sin \phi \] Rearranging this, we find: \[ \frac{x}{y} = \frac{\sin \theta}{\sin \phi} \] ### Final Answer Thus, the value of \( \frac{x}{y} \) is: \[ \frac{x}{y} = \frac{\sin \theta}{\sin \phi} \] The correct option is (B) \( \frac{\sin \theta}{\sin \phi} \).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Solved Examples : Single Option Correct Type Questions|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

Prove: (costheta)/(1-sintheta)=(1+sintheta)/(costheta)

If sintheta+sinphi=sqrt3(cosphi-costheta)) , prove that sin3theta+sin3phi=0

(sintheta)/(1+costheta) is equal to (a) (1+costheta)/(sintheta) (b) (1-costheta)/(costheta) (c) (1-costheta)/(sintheta) (d) (1-sintheta)/(costheta)

(sintheta)/(1+costheta)+(1+costheta)/(sintheta)=2cosectheta

(sintheta)/(1-cottheta)+(costheta)/(1-tantheta) is equal to (a) 0 (b) 1 (c) sintheta+costheta (d) sintheta-costheta

Prove: (1-costheta)/(sintheta)=(sintheta)/(1+costheta)

(sintheta)/(1+costheta) + (1+costheta)/(sintheta) = 2 cosec theta

Find (dy)/(dx) , if x=a(theta+sintheta), y=1(1-costheta) .

Prove: (costheta)/(1+sintheta)=(1-sintheta)/(costheta)

If tantheta=a/b then find the value of (costheta+sintheta)/(costheta-sintheta)

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If tantheta=(xsinphi)/(1-xcosphi) and tanphi=(ysintheta)/(1-ycostheta)...

    Text Solution

    |

  2. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  3. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  4. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  5. Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for theta ...

    Text Solution

    |

  6. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  7. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  8. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  9. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)^(...

    Text Solution

    |

  10. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  11. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  12. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  13. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  14. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  15. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  16. Let cos(alpha+beta)""=4/5 and let sin (alpha+beta)""=5/(13) where 0lt=...

    Text Solution

    |

  17. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  18. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  19. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  20. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |