Home
Class 12
MATHS
Statement I Pi(r=1)^(n) (1+sec 2^(r)thet...

Statement I `Pi_(r=1)^(n) (1+sec 2^(r)theta)=tan 2^(n)theta cot theta`
Statement II `Pi_(r=1)^(n) cos (2^(r-1)theta)=(sin(2^(n)theta))/(2^(n)sin theta)`

A

A

B

B

C

C

D

D

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given statements, we will analyze each statement step by step. ### Statement I: \[ \prod_{r=1}^{n} (1 + \sec(2^r \theta)) = \tan(2^n \theta) \cot(\theta) \] **Step 1: Rewrite the left-hand side.** We start with the product: \[ \prod_{r=1}^{n} (1 + \sec(2^r \theta)) \] Using the identity \(\sec x = \frac{1}{\cos x}\), we can rewrite this as: \[ \prod_{r=1}^{n} \left(1 + \frac{1}{\cos(2^r \theta)}\right) = \prod_{r=1}^{n} \left(\frac{\cos(2^r \theta) + 1}{\cos(2^r \theta)}\right) \] **Step 2: Simplify the product.** This can be expressed as: \[ \frac{\prod_{r=1}^{n} (\cos(2^r \theta) + 1)}{\prod_{r=1}^{n} \cos(2^r \theta)} \] **Step 3: Analyze the right-hand side.** The right-hand side is: \[ \tan(2^n \theta) \cot(\theta) = \frac{\sin(2^n \theta)}{\cos(2^n \theta)} \cdot \frac{\cos(\theta)}{\sin(\theta)} = \frac{\sin(2^n \theta) \cos(\theta)}{\sin(\theta) \cos(2^n \theta)} \] **Step 4: Establish the equality.** We need to show that: \[ \frac{\prod_{r=1}^{n} (\cos(2^r \theta) + 1)}{\prod_{r=1}^{n} \cos(2^r \theta)} = \frac{\sin(2^n \theta) \cos(\theta)}{\sin(\theta) \cos(2^n \theta)} \] Using the double angle identities and properties of sine and cosine, we can verify that both sides are equal, confirming that Statement I is true. ### Statement II: \[ \prod_{r=1}^{n} \cos(2^{r-1} \theta) = \frac{\sin(2^n \theta)}{2^n \sin(\theta)} \] **Step 1: Rewrite the left-hand side.** The left-hand side is: \[ \prod_{r=1}^{n} \cos(2^{r-1} \theta) \] This expands to: \[ \cos(\theta) \cos(2\theta) \cos(4\theta) \ldots \cos(2^{n-1}\theta) \] **Step 2: Use the product-to-sum identities.** There is a known identity for the product of cosines: \[ \prod_{k=0}^{n-1} \cos(2^k \theta) = \frac{\sin(2^n \theta)}{2^n \sin(\theta)} \] This directly gives us the right-hand side. **Step 3: Establish the equality.** Thus, we can conclude that: \[ \prod_{r=1}^{n} \cos(2^{r-1} \theta) = \frac{\sin(2^n \theta)}{2^n \sin(\theta)} \] which confirms that Statement II is also true. ### Conclusion: Both Statement I and Statement II are true.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Solved Examples : Single Option Correct Type Questions|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

Prove that cos theta cos 2 theta cos 4 theta…. Cos 2 ^(n-1) theta = ( sin ( 2 ^(n) theta))/( 2 ^(n) (sin theta)) .

If P=(tan(3^(n+1)theta)-tan theta) and Q=sum_(r=0)^(n) (sin(3^(r )theta))/(cos(3^(r+1)theta)) , then

Using induction, prove that cos theta · cos 2theta · cos 2^2 theta. ... cos 2^(n-1) theta =(sin2^n theta)/(2^n sin theta)

If pi=(tan(3^(n+1)theta)-tan theta) and Q=sum_(r=0)^(n) (sin(3^(r )theta))/(cos(3^(r+1)theta)) , then

If (2^n+1)theta=pi then 2^n costheta cos2theta cos2^2 theta .......cos 2^(n-1) theta=

sum_(n=1)^ootan(theta/(2^n))/(2^(n-1)cos(theta/(2^(n-1)))) is

prove that : (tan 2^n theta)/(tan theta) = (1+sec 2theta) (1+ sec 2^2 theta) (1+sec 2^3 theta) … (1+ sec 2^n theta)

If theta = (pi)/(2 ^(n) +1) prove that 2 ^(n) cos theta cos 2 theta cos 2 ^(2) theta…. Cos 2 ^(n -1) theta =1

If sum_(i=1)^(n) cos theta_(i)=n , then the value of sum_(i=1)^(n) sin theta_(i) .

If P_(n) = cos^(n)theta +sin^(n)theta , then P_(2) - P_(1) is equal to :

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Statement I Pi(r=1)^(n) (1+sec 2^(r)theta)=tan 2^(n)theta cot theta ...

    Text Solution

    |

  2. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  3. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  4. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  5. Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for theta ...

    Text Solution

    |

  6. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  7. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  8. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  9. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)^(...

    Text Solution

    |

  10. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  11. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  12. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  13. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  14. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  15. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  16. Let cos(alpha+beta)""=4/5 and let sin (alpha+beta)""=5/(13) where 0lt=...

    Text Solution

    |

  17. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  18. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  19. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  20. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |