Home
Class 12
MATHS
Statement-1: cos36^(@)gttan36^(@) Stat...

Statement-1: `cos36^(@)gttan36^(@)`
Statement-2: `cos36^(@)gtsin36^(@)`

A

A

B

B

C

C

D

D

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the two statements given regarding the trigonometric functions at an angle of 36 degrees. ### Step-by-step Solution: **Step 1: Analyze Statement 1** - We need to evaluate whether \( \cos(36^\circ) > \tan(36^\circ) \). - Recall the definitions of the trigonometric functions: - \( \tan(36^\circ) = \frac{\sin(36^\circ)}{\cos(36^\circ)} \). - Therefore, the inequality can be rewritten as: \[ \cos(36^\circ) > \frac{\sin(36^\circ)}{\cos(36^\circ)} \] - Multiplying both sides by \( \cos(36^\circ) \) (which is positive for \( 36^\circ \)): \[ \cos^2(36^\circ) > \sin(36^\circ) \] **Step 2: Use the Pythagorean Identity** - We know from the Pythagorean identity that: \[ \sin^2(36^\circ) + \cos^2(36^\circ) = 1 \] - Therefore, we can express \( \sin(36^\circ) \) in terms of \( \cos(36^\circ) \): \[ \sin(36^\circ) = \sqrt{1 - \cos^2(36^\circ)} \] **Step 3: Compare Values** - We need to determine if: \[ \cos^2(36^\circ) > \sqrt{1 - \cos^2(36^\circ)} \] - To analyze this, we can use numerical values or a calculator to find \( \cos(36^\circ) \) and \( \tan(36^\circ) \): - \( \cos(36^\circ) \approx 0.809 \) - \( \tan(36^\circ) \approx 0.726 \) - Since \( 0.809 > 0.726 \), we conclude that: \[ \cos(36^\circ) > \tan(36^\circ) \] - Thus, Statement 1 is **True**. **Step 4: Analyze Statement 2** - Now we need to evaluate whether \( \cos(36^\circ) > \sin(36^\circ) \). - We can use the same numerical values: - \( \sin(36^\circ) \approx 0.588 \) - Since \( 0.809 > 0.588 \), we conclude that: \[ \cos(36^\circ) > \sin(36^\circ) \] - Thus, Statement 2 is also **True**. ### Conclusion Both statements are true: - Statement 1: \( \cos(36^\circ) > \tan(36^\circ) \) is true. - Statement 2: \( \cos(36^\circ) > \sin(36^\circ) \) is true.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Solved Examples : Single Option Correct Type Questions|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

Statement-1: (cos36^(@)-cos752^(@))/(cos36^(@)cos72^(@))=2 Statement-2: sin15^(@)=(sqrt6-sqrt7)/(4)

Prove that sin 36^(@) + cos 36^(@) = sqrt(2) cos 9^(@)

Prove that sin 36 ^(@) + cos 36 ^(@) = sqrt2 cos 9^(@).

4 cos 12 ^(@) cos 48^(@) cos 72^(@) = cos 36 ^(@)

3 cos 72 ^(@) -4 sin ^(3) 18^(@) = cos 36 ^(@).

Prove that: i) tan36^(@)+tan9^(@)+tan36^(@)tan9^(@)=1

Add: 36^(@)53' and 71^(@)34'

sec 72 ^(@) - sec 36^(@) = 2.

Find : sin 36^(@) 51'

Prove that : cos 36 ^(@) - sin 18^(@) = (1)/(2).

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Statement-1: cos36^(@)gttan36^(@) Statement-2: cos36^(@)gtsin36^(@)

    Text Solution

    |

  2. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  3. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  4. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  5. Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for theta ...

    Text Solution

    |

  6. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  7. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  8. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  9. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)^(...

    Text Solution

    |

  10. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  11. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  12. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  13. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  14. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  15. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  16. Let cos(alpha+beta)""=4/5 and let sin (alpha+beta)""=5/(13) where 0lt=...

    Text Solution

    |

  17. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  18. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  19. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  20. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |