Home
Class 12
MATHS
statement-I- cos^3alpha + cos^3(alpha+2p...

statement-I- `cos^3alpha + cos^3(alpha+2pi/3) + cos^3(alpha+4pi/3) = ``3cosalpha cos(alpha+2pi/3)cos(alpha+4pi/3) Because` Statement-II - `if a+b+c=0 iff a^3+b^3+c^3=3abc`

A

A

B

B

C

C

D

D

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to prove the statement: **Statement I:** \[ \cos^3 \alpha + \cos^3 \left( \alpha + \frac{2\pi}{3} \right) + \cos^3 \left( \alpha + \frac{4\pi}{3} \right) = 3 \cos \alpha \cos \left( \alpha + \frac{2\pi}{3} \right) \cos \left( \alpha + \frac{4\pi}{3} \right) \] **Statement II:** If \( a + b + c = 0 \), then \( a^3 + b^3 + c^3 = 3abc \). ### Step-by-Step Solution 1. **Identify \( a, b, c \):** Let: \[ a = \cos \alpha, \quad b = \cos \left( \alpha + \frac{2\pi}{3} \right), \quad c = \cos \left( \alpha + \frac{4\pi}{3} \right) \] 2. **Sum of angles:** We know that: \[ b + c = \cos \left( \alpha + \frac{2\pi}{3} \right) + \cos \left( \alpha + \frac{4\pi}{3} \right) \] Using the cosine addition formula: \[ \cos A + \cos B = 2 \cos \left( \frac{A+B}{2} \right) \cos \left( \frac{A-B}{2} \right) \] Here, \( A = \alpha + \frac{2\pi}{3} \) and \( B = \alpha + \frac{4\pi}{3} \): \[ b + c = 2 \cos \left( \alpha + \frac{\pi}{3} \right) \cos \left( \frac{-\pi}{3} \right) = 2 \cos \left( \alpha + \frac{\pi}{3} \right) \left(-\frac{1}{2}\right) = -\cos \left( \alpha + \frac{\pi}{3} \right) \] 3. **Check if \( a + b + c = 0 \):** Now we can write: \[ a + b + c = \cos \alpha + \cos \left( \alpha + \frac{2\pi}{3} \right) + \cos \left( \alpha + \frac{4\pi}{3} \right) = 0 \] This confirms that \( a + b + c = 0 \). 4. **Use Statement II:** According to Statement II, since \( a + b + c = 0 \): \[ a^3 + b^3 + c^3 = 3abc \] Therefore: \[ \cos^3 \alpha + \cos^3 \left( \alpha + \frac{2\pi}{3} \right) + \cos^3 \left( \alpha + \frac{4\pi}{3} \right) = 3 \cos \alpha \cos \left( \alpha + \frac{2\pi}{3} \right) \cos \left( \alpha + \frac{4\pi}{3} \right) \] 5. **Conclusion:** Thus, we have proved Statement I using Statement II. ### Final Answer: Both Statement I and Statement II are correct, and Statement II is the correct explanation for Statement I.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Solved Examples : Single Option Correct Type Questions|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

Statement 1 is True: Statement 2 is True; Statement 2 is a correct explanation for statement 1 Statement 1 is true, Statement 2 is true;2 Statement 2 not a correct explanation for statement 1. Statement 1 is true, statement 2 is false Statement 1 is false, statement 2 is true Statement I: cos^3alpha+cos^3(alpha+(2pi)/3)+(alpha+(4pi)/3)=2cosalphacos(alpha+(2pi)/3)cos(alpha+(4pi)/3) because Statement II: In a+b+c=0=>a^3+b^3+c^3=3a c a. A b. \ B c. \ C d. D

cos alpha cos(60^(@) - alpha ) cos (60^(@) + alpha ) = 1/4 cos 3 alpha.

(cos ^(3) alpha - cos 3 alpha )/( cos alpha ) + (sin ^(3)alpha + sin 3 alpha )/( sin alpha ) = 3.

Show that 4 sin alpha.sin (alpha + pi/3) sin (alpha + 2pi/3) = sin 3alpha

(cos alpha + 2 cos 3 alpha + cos 5 alpha )/(cos 3 alpha + 2 cos 5 alpha + cos 7 alpha ) = cos 3 alpha sec 5 alpha .

1/(cosalpha+cos3alpha)+1/(cosalpha+cos5alpha)....1/(cosalpha+cos(2n+1)alpha

cos2 alpha-cos3alpha-cos4alpha+cos5alpha simplifies to :

find the value of (cos^3alpha+sin^3alpha)/(1-sin(alpha).cos(alpha))

If alpha = pi/3 , prove that cos alpha*cos 2alpha*cos 3alpha*cos 4alpha*cos 5alpha*cos 6alpha = -1/16 .

If alpha = pi/3 , prove that cos alpha*cos 2alpha*cos 3alpha*cos 4alpha*cos 5alpha*cos 6alpha = -1/16 .

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. statement-I- cos^3alpha + cos^3(alpha+2pi/3) + cos^3(alpha+4pi/3) = 3c...

    Text Solution

    |

  2. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  3. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  4. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  5. Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for theta ...

    Text Solution

    |

  6. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  7. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  8. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  9. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)^(...

    Text Solution

    |

  10. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  11. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  12. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  13. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  14. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  15. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  16. Let cos(alpha+beta)""=4/5 and let sin (alpha+beta)""=5/(13) where 0lt=...

    Text Solution

    |

  17. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  18. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  19. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  20. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |