Home
Class 12
MATHS
STATEMENT-1: sin 2 > sin 3 STATEMENT-2: ...

STATEMENT-1: `sin 2 > sin 3` STATEMENT-2: If `x,y in (pi/2, pi), x lt y,` then `sin x gt siny`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the validity of the two statements provided, we will analyze each statement step by step. ### Step 1: Analyze Statement 1 **Statement 1:** `sin 2 > sin 3` 1. **Convert radians to degrees:** - \(2\) radians is approximately \(114.59^\circ\) - \(3\) radians is approximately \(171.89^\circ\) 2. **Evaluate the sine values:** - We know that the sine function increases in the interval \( (0, \frac{\pi}{2}) \) and decreases in the interval \( (\frac{\pi}{2}, \pi) \). - Since \(2\) radians is in the interval \( ( \frac{\pi}{2}, \pi) \) and \(3\) radians is also in the interval \( ( \frac{\pi}{2}, \pi) \), we can analyze their sine values based on their positions within this interval. 3. **Graphical interpretation:** - The sine function reaches its maximum at \( \frac{\pi}{2} \) and decreases towards \( \pi \). - Since \(2 < 3\), it follows that \( \sin(2) > \sin(3) \). Thus, **Statement 1 is true.** ### Step 2: Analyze Statement 2 **Statement 2:** If \(x, y \in \left(\frac{\pi}{2}, \pi\right)\), \(x < y\), then \(\sin x > \sin y\). 1. **Understanding the intervals:** - The interval \( \left(\frac{\pi}{2}, \pi\right) \) corresponds to angles between \(90^\circ\) and \(180^\circ\). - In this interval, the sine function is decreasing. 2. **Choose specific values:** - Let \(x = \frac{2\pi}{3}\) (which is approximately \(120^\circ\)) and \(y = \frac{5\pi}{6}\) (which is approximately \(150^\circ\)). - Here, \(x < y\). 3. **Evaluate the sine values:** - \(\sin\left(\frac{2\pi}{3}\right) = \sin(120^\circ) = \frac{\sqrt{3}}{2}\) - \(\sin\left(\frac{5\pi}{6}\right) = \sin(150^\circ) = \frac{1}{2}\) 4. **Comparison:** - Since \(\frac{\sqrt{3}}{2} > \frac{1}{2}\), it follows that \(\sin x > \sin y\). Thus, **Statement 2 is also true.** ### Conclusion Both statements are true: - **Statement 1:** \( \sin 2 > \sin 3 \) is true. - **Statement 2:** If \( x < y \) in \( \left(\frac{\pi}{2}, \pi\right) \), then \( \sin x > \sin y \) is true.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Solved Examples : Single Option Correct Type Questions|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

STATEMENT -1 : tan^(-1)x=sin^(-1)yrArry in (-1,1) and STATEMENT -2 : -pi/2 lt tan^(-1)x lt pi/2

If x+y=(4pi)/(3) and sin x = 2 sin y , then

If x+y=2pi//3 and sin x//sin y=2 , then the

Statement -1: sin 1 lt sin 2 lt sin3 Statement-2: sin3 lt sin2 lt sin1 Statement-3: sinx_(1) lt sinx_(2), x_(1) , x_(2) in (0,pi/2)

If sin^-1 x + sin^-1 y = (2pi)/3, then cos^-1 x + cos^-1 y =

If cos x + sin x = a , (- (pi)/(2) lt x lt - (pi)/(4)) , then cos 2 x is equal to

STATEMENT-1 : The solution of sin^-1 6x+sin^-1 6sqrt3x=pi/2 is , x= +- 1/12. and STATEMENT - 2 As, sin^-1 x is defined for |x| <= 1.

If x, y in [0, 2pi] and sin x + sin y=2 , then the value of x+y is

If 0 le x, y le pi "and sin"x + "sin" y = 2, "then"x + y =

Solve : cos 3x + cos 2x = sin ""(3)/(2) x + sin "" (1)/(2) x, 0 lt x le pi.

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. STATEMENT-1: sin 2 > sin 3 STATEMENT-2: If x,y in (pi/2, pi), x lt y, ...

    Text Solution

    |

  2. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  3. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  4. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  5. Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for theta ...

    Text Solution

    |

  6. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  7. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  8. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  9. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)^(...

    Text Solution

    |

  10. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  11. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  12. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  13. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  14. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  15. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  16. Let cos(alpha+beta)""=4/5 and let sin (alpha+beta)""=5/(13) where 0lt=...

    Text Solution

    |

  17. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  18. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  19. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  20. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |