Home
Class 12
MATHS
Let alpha,beta,gamma > 0 and alpha+beta+...

Let `alpha,beta,gamma > 0 and alpha+beta+gamma=pi/2.` Statement-1: `|tan alpha tan beta-(a!)/6|+|tan beta tan gamma-(b!)/2|+|tan gamma tanalpha-(c!)/3| le 0,` where `n! =1.2..........n,` then `tan alpha tanbeta,tanbeta tangamma, tan gamma tan alpha=1`

Settlement 2 : `tan alpha tanbeta+,tanbeta tangamma+, tan gamma tan alpha=1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, let's analyze the statements provided and derive the necessary conclusions. ### Step 1: Understanding the Given Conditions We are given that: - \( \alpha, \beta, \gamma > 0 \) - \( \alpha + \beta + \gamma = \frac{\pi}{2} \) ### Step 2: Analyzing Statement 2 Statement 2 claims: \[ \tan \alpha \tan \beta + \tan \beta \tan \gamma + \tan \gamma \tan \alpha = 1 \] To prove this, we can use the identity for the tangent of a sum: \[ \tan(\alpha + \beta) = \tan\left(\frac{\pi}{2} - \gamma\right) = \cot \gamma \] Using the tangent addition formula: \[ \tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} \] Setting this equal to \( \cot \gamma \): \[ \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} = \cot \gamma = \frac{1}{\tan \gamma} \] Cross-multiplying gives: \[ (\tan \alpha + \tan \beta) \tan \gamma = 1 - \tan \alpha \tan \beta \] Rearranging this, we find: \[ \tan \alpha \tan \beta + \tan \beta \tan \gamma + \tan \gamma \tan \alpha = 1 \] Thus, Statement 2 is **true**. ### Step 3: Analyzing Statement 1 Statement 1 claims: \[ |\tan \alpha \tan \beta - (a!)/6| + |\tan \beta \tan \gamma - (b!)/2| + |\tan \gamma \tan \alpha - (c!)/3| \leq 0 \] Since the absolute value is always non-negative, the only way for the sum of these absolute values to be less than or equal to zero is if each term is exactly zero. Therefore, we can conclude: \[ \tan \alpha \tan \beta = \frac{a!}{6}, \quad \tan \beta \tan \gamma = \frac{b!}{2}, \quad \tan \gamma \tan \alpha = \frac{c!}{3} \] However, we have already established from Statement 2 that: \[ \tan \alpha \tan \beta + \tan \beta \tan \gamma + \tan \gamma \tan \alpha = 1 \] This contradicts the possibility of the absolute values being less than or equal to zero unless all terms are zero, which is impossible since \( \alpha, \beta, \gamma > 0 \). Therefore, Statement 1 is **false**. ### Conclusion - Statement 1 is **false**. - Statement 2 is **true**.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Solved Examples : Single Option Correct Type Questions|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

Let alpha,beta,gamma>0a n dalpha+beta+gamma=pi/2dot Then prove that sqrt(tanalphatanbeta) + sqrt(t a nbeta"tan"gamma)+sqrt(tanalphatangamma)lt=sqrt(3)

If tan^2 alpha tan^2 beta + tan^2 beta tan^2 gamma + tan^2 gamma tan^2 alpha + 2 tan^2 alpha tan^2 beta tan^2 gamma = 1 then sin^2 alpha + sin^2 beta + sin^2 gamma =

(1+tan alpha tan beta)^2 + (tan alpha - tan beta)^2 =

If alpha + beta = 90^@ and beta + gamma = alpha then tanalpha-tanbeta=?

If alpha+beta=pi/4 then (1+tan alpha)(1+tan beta)=

If alpha+beta+gamma=2pi , then show that tan.alpha/2 + tan.beta/2 + tan.gamma/2 = tan.alpha/2 tan.beta/2 tan.gamma/2 .

If alpha+beta=pi/2a n dbeta+gamma=alpha, then tanalpha equals 2(tanbeta+tangamma) (b) tanbeta+tangamma tanbeta+2tangamma (d) 2tanbeta+tangamma

If tanalpha=(1-cosbeta)/(sinbeta),t h e n (a) tan3alpha=tan2beta (b) tan2alpha=tanbeta (c) tan2beta=tanalpha (d) none of these

If 2 sin alphacos beta sin gamma=sinbeta sin(alpha+gamma),then tan alpha,tan beta and gamma are in

If alpha + beta + gamma = pi , show that : tan (beta+gamma-alpha) + tan (gamma+alpha-beta) + tan (alpha+beta-gamma) = tan (beta+gamma-alpha) tan (gamma+alpha-beta) tan (alpha+beta-gamma)

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Let alpha,beta,gamma > 0 and alpha+beta+gamma=pi/2. Statement-1: |tan ...

    Text Solution

    |

  2. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  3. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  4. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  5. Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for theta ...

    Text Solution

    |

  6. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  7. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  8. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  9. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)^(...

    Text Solution

    |

  10. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  11. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  12. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  13. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  14. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  15. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  16. Let cos(alpha+beta)""=4/5 and let sin (alpha+beta)""=5/(13) where 0lt=...

    Text Solution

    |

  17. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  18. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  19. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  20. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |