Home
Class 12
MATHS
Let f(theta)= sin theta - cos^(2) theta-...

Let `f(theta)= sin theta - cos^(2) theta-1`, where `theta in R` and `m le f(theta) le M` .
The value of `(4m+13)` is equal to

A

0

B

4

C

5

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(\theta) = \sin \theta - \cos^2 \theta - 1 \) and find its minimum and maximum values, denoted as \( m \) and \( M \), respectively. We will then compute \( 4m + 13 \). ### Step-by-Step Solution: 1. **Rewrite the Function**: \[ f(\theta) = \sin \theta - \cos^2 \theta - 1 \] We can also express \( \cos^2 \theta \) in terms of \( \sin \theta \): \[ \cos^2 \theta = 1 - \sin^2 \theta \] Thus, \[ f(\theta) = \sin \theta - (1 - \sin^2 \theta) - 1 = \sin \theta + \sin^2 \theta - 2 \] 2. **Differentiate the Function**: To find the critical points, we differentiate \( f(\theta) \): \[ f'(\theta) = \cos \theta + 2 \sin \theta \cos \theta = \cos \theta(1 + 2 \sin \theta) \] Setting \( f'(\theta) = 0 \): \[ \cos \theta = 0 \quad \text{or} \quad 1 + 2 \sin \theta = 0 \] 3. **Solve for Critical Points**: - From \( \cos \theta = 0 \), we get: \[ \theta = \frac{\pi}{2} + n\pi \quad (n \in \mathbb{Z}) \] - From \( 1 + 2 \sin \theta = 0 \): \[ \sin \theta = -\frac{1}{2} \] This gives: \[ \theta = \frac{7\pi}{6}, \frac{11\pi}{6} \quad \text{(in the third and fourth quadrants)} \] 4. **Evaluate \( f(\theta) \) at Critical Points**: - For \( \theta = \frac{\pi}{2} \): \[ f\left(\frac{\pi}{2}\right) = \sin\left(\frac{\pi}{2}\right) - \cos^2\left(\frac{\pi}{2}\right) - 1 = 1 - 0 - 1 = 0 \] - For \( \theta = \frac{7\pi}{6} \): \[ f\left(\frac{7\pi}{6}\right) = \sin\left(\frac{7\pi}{6}\right) - \cos^2\left(\frac{7\pi}{6}\right) - 1 \] \[ = -\frac{1}{2} - \left(-\frac{\sqrt{3}}{2}\right)^2 - 1 = -\frac{1}{2} - \frac{3}{4} - 1 = -\frac{1}{2} - \frac{3}{4} - \frac{4}{4} = -\frac{9}{4} \] - For \( \theta = \frac{11\pi}{6} \): \[ f\left(\frac{11\pi}{6}\right) = \sin\left(\frac{11\pi}{6}\right) - \cos^2\left(\frac{11\pi}{6}\right) - 1 \] \[ = -\frac{1}{2} - \left(\frac{\sqrt{3}}{2}\right)^2 - 1 = -\frac{1}{2} - \frac{3}{4} - 1 = -\frac{1}{2} - \frac{3}{4} - \frac{4}{4} = -\frac{9}{4} \] 5. **Determine Minimum and Maximum Values**: - The maximum value \( M = 0 \) (from \( \theta = \frac{\pi}{2} \)). - The minimum value \( m = -\frac{9}{4} \) (from \( \theta = \frac{7\pi}{6} \) and \( \theta = \frac{11\pi}{6} \)). 6. **Calculate \( 4m + 13 \)**: \[ 4m + 13 = 4\left(-\frac{9}{4}\right) + 13 = -9 + 13 = 4 \] ### Final Answer: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Solved Examples : Single Option Correct Type Questions|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

Let f(theta)= sin theta - cos^(2) theta-1 , where theta in R and m le f(theta) le M . Find all values satisfying the equation sqrt((1)/(|m|)+sqrt((1)/(|m|)+sqrt((1)/(|m|)+...............oo))) , is

Let f(theta)= sin theta - cos^(2) theta-1 , where theta in R and m le f(theta) le M . Let N denotes the number of solution of the equation f(theta)=0 in [0,4 pi] then the value of log_(sqrt(m^(2)))(N)+log_(sqrt(m^(2)))((1)/(N+1)) is equal to

If f (theta) = |sin theta| + |cos theta|, theta in R , then

Solve sin^(2) theta-cos theta=1/4, 0 le theta le 2pi .

If 2 cos ^(2) theta + sin theta - 2=0 and 0^(@) le theta le 90 ^(@) find the value of theta.

If 6sin^(2)theta - sin theta = 1 and 0 le theta le pi , what is the value of sin theta ?

Solve cos theta * cos 2 theta * cos 3 theta = (1)/( 4), 0 le theta le pi

Range of f(theta)=cos^2theta(cos^2theta+1)+2sin^2theta is

Prove that : sin theta cos^3 theta - cos theta sin^3 theta = 1/4 sin4theta .

If sin^(3) theta+sin theta cos theta+ cos^(3) theta=1 , then theta is equal to (n in Z)

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Let f(theta)= sin theta - cos^(2) theta-1, where theta in R and m le f...

    Text Solution

    |

  2. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  3. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  4. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  5. Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for theta ...

    Text Solution

    |

  6. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  7. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  8. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  9. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)^(...

    Text Solution

    |

  10. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  11. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  12. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  13. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  14. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  15. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  16. Let cos(alpha+beta)""=4/5 and let sin (alpha+beta)""=5/(13) where 0lt=...

    Text Solution

    |

  17. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  18. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  19. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  20. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |