Home
Class 12
MATHS
Let f(theta)= sin theta - cos^(2) theta-...

Let `f(theta)= sin theta - cos^(2) theta-1`, where `theta in R` and `m le f(theta) le M` .
Find all values satisfying the equation
`sqrt((1)/(|m|)+sqrt((1)/(|m|)+sqrt((1)/(|m|)+...............oo)))`, is

A

`1/3`

B

`2/3`

C

`3/3`

D

`4/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(\theta) = \sin \theta - \cos^2 \theta - 1 \) and find the values of \( m \) and \( M \) such that \( m \leq f(\theta) \leq M \). Then, we will evaluate the infinite nested radical expression given in the problem. ### Step 1: Rewrite the function \( f(\theta) \) We start with the function: \[ f(\theta) = \sin \theta - \cos^2 \theta - 1 \] Using the identity \( \cos^2 \theta = 1 - \sin^2 \theta \), we can rewrite \( f(\theta) \): \[ f(\theta) = \sin \theta - (1 - \sin^2 \theta) - 1 \] This simplifies to: \[ f(\theta) = \sin \theta + \sin^2 \theta - 2 \] ### Step 2: Analyze the function \( f(\theta) \) Now, we have: \[ f(\theta) = \sin^2 \theta + \sin \theta - 2 \] Let \( x = \sin \theta \). The function can be expressed as: \[ f(x) = x^2 + x - 2 \] This is a quadratic function in terms of \( x \). ### Step 3: Find the vertex of the quadratic The vertex of a quadratic \( ax^2 + bx + c \) is given by \( x = -\frac{b}{2a} \). Here, \( a = 1 \) and \( b = 1 \): \[ x = -\frac{1}{2 \cdot 1} = -\frac{1}{2} \] Now we evaluate \( f(x) \) at the vertex: \[ f\left(-\frac{1}{2}\right) = \left(-\frac{1}{2}\right)^2 + \left(-\frac{1}{2}\right) - 2 = \frac{1}{4} - \frac{1}{2} - 2 = \frac{1}{4} - \frac{2}{4} - \frac{8}{4} = -\frac{9}{4} \] ### Step 4: Determine the range of \( f(\theta) \) The quadratic opens upwards (since \( a > 0 \)), and we need to find the maximum value of \( f(x) \) for \( x \in [-1, 1] \) (the range of \( \sin \theta \)). Calculating \( f(1) \): \[ f(1) = 1^2 + 1 - 2 = 0 \] Calculating \( f(-1) \): \[ f(-1) = (-1)^2 + (-1) - 2 = 1 - 1 - 2 = -2 \] Thus, the minimum value \( m = -\frac{9}{4} \) and the maximum value \( M = 0 \). ### Step 5: Solve the infinite nested radical expression The expression given is: \[ y = \sqrt{\frac{1}{|m|} + \sqrt{\frac{1}{|m|} + \sqrt{\frac{1}{|m|} + \ldots}}} \] Since \( m = -\frac{9}{4} \), we have \( |m| = \frac{9}{4} \): \[ y = \sqrt{\frac{4}{9} + y} \] ### Step 6: Square both sides Squaring both sides gives: \[ y^2 = \frac{4}{9} + y \] Rearranging this leads to: \[ y^2 - y - \frac{4}{9} = 0 \] ### Step 7: Solve the quadratic equation Using the quadratic formula \( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ y = \frac{1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot \left(-\frac{4}{9}\right)}}{2 \cdot 1} \] Calculating the discriminant: \[ 1 + \frac{16}{9} = \frac{25}{9} \] Thus: \[ y = \frac{1 \pm \frac{5}{3}}{2} \] Calculating the two possible values: 1. \( y = \frac{1 + \frac{5}{3}}{2} = \frac{8}{6} = \frac{4}{3} \) 2. \( y = \frac{1 - \frac{5}{3}}{2} = \frac{-2}{6} = -\frac{1}{3} \) ### Step 8: Final answer Since \( y \) must be non-negative, we take: \[ y = \frac{4}{3} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Solved Examples : Single Option Correct Type Questions|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

Let f(theta)= sin theta - cos^(2) theta-1 , where theta in R and m le f(theta) le M . The value of (4m+13) is equal to

Solve sin^(2) theta-cos theta=1/4, 0 le theta le 2pi .

Let f(theta)= sin theta - cos^(2) theta-1 , where theta in R and m le f(theta) le M . Let N denotes the number of solution of the equation f(theta)=0 in [0,4 pi] then the value of log_(sqrt(m^(2)))(N)+log_(sqrt(m^(2)))((1)/(N+1)) is equal to

If 2 cos ^(2) theta + sin theta - 2=0 and 0^(@) le theta le 90 ^(@) find the value of theta.

Solve cos theta * cos 2 theta * cos 3 theta = (1)/( 4), 0 le theta le pi

If 6sin^(2)theta - sin theta = 1 and 0 le theta le pi , what is the value of sin theta ?

Find the most general values of theta satisfying the equation : sin theta = -1

If f(theta) = (1- sin 2theta + cos 2theta)/(2sin 2theta) then value of f(11^o). f(34^o) is

Find the general value of theta cos theta = (1)/( sqrt2)

Let l= sin theta, m=cos theta and n=tan theta . Q. If theta=-1042^(@) , then :

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Let f(theta)= sin theta - cos^(2) theta-1, where theta in R and m le f...

    Text Solution

    |

  2. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  3. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  4. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  5. Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for theta ...

    Text Solution

    |

  6. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  7. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  8. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  9. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)^(...

    Text Solution

    |

  10. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  11. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  12. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  13. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  14. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  15. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  16. Let cos(alpha+beta)""=4/5 and let sin (alpha+beta)""=5/(13) where 0lt=...

    Text Solution

    |

  17. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  18. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  19. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  20. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |