Home
Class 12
MATHS
If x,y in R and satisfy the equation xy(...

If `x,y in R` and satisfy the equation `xy(x^(2)-y^(2))=x^(2)+y^(2)` where `xne0` then the minimum possible value of `x^(2)+y^(2)` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( xy(x^2 - y^2) = x^2 + y^2 \) where \( x, y \in \mathbb{R} \) and \( x \neq 0 \), we will follow these steps: ### Step 1: Substitute Variables Let \( x = r \cos \theta \) and \( y = r \sin \theta \). This substitution is useful because it allows us to express \( x^2 + y^2 \) in terms of \( r \) and \( \theta \). ### Step 2: Rewrite the Equation Substituting into the equation gives: \[ xy(x^2 - y^2) = (r \cos \theta)(r \sin \theta)((r \cos \theta)^2 - (r \sin \theta)^2) \] This simplifies to: \[ r^2 \cos \theta \sin \theta (r^2 \cos^2 \theta - r^2 \sin^2 \theta) = r^2 \cos^2 \theta + r^2 \sin^2 \theta \] Factoring out \( r^2 \) from both sides, we have: \[ r^2 \cos \theta \sin \theta (r^2 (\cos^2 \theta - \sin^2 \theta)) = r^2 \] ### Step 3: Simplify the Equation Since \( r^2 \) is not zero (as \( x \neq 0 \)), we can divide both sides by \( r^2 \): \[ \cos \theta \sin \theta (\cos^2 \theta - \sin^2 \theta) = 1 \] ### Step 4: Use Trigonometric Identities Recall that \( \sin 2\theta = 2 \sin \theta \cos \theta \) and \( \cos 2\theta = \cos^2 \theta - \sin^2 \theta \). Thus, we can rewrite the equation as: \[ \frac{1}{2} \sin 2\theta \cos 2\theta = 1 \] Multiplying both sides by 2 gives: \[ \sin 2\theta \cos 2\theta = 2 \] ### Step 5: Further Simplification Using the identity \( \sin 4\theta = 2 \sin 2\theta \cos 2\theta \), we can rewrite the equation as: \[ \frac{1}{2} \sin 4\theta = 2 \] Thus, we have: \[ \sin 4\theta = 4 \] However, since the sine function has a maximum value of 1, we need to adjust our approach. ### Step 6: Find Minimum Value of \( r^2 \) From our previous steps, we derived: \[ r^2 = \frac{4}{\sin 4\theta} \] To minimize \( r^2 \), we need to maximize \( \sin 4\theta \). The maximum value of \( \sin 4\theta \) is 1, occurring when \( 4\theta = \frac{\pi}{2} + 2k\pi \) for \( k \in \mathbb{Z} \). ### Step 7: Calculate Minimum Value Thus, the minimum value of \( r^2 \) occurs when \( \sin 4\theta = 1 \): \[ r^2 = \frac{4}{1} = 4 \] Therefore, the minimum possible value of \( x^2 + y^2 \) is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Solved Examples : Single Option Correct Type Questions|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

If xy=1 , then minimum value of x ^(2) + y^(2) is :

If x and y satisfy te equation xy-2x^(2)-9x+3y-16=0 then

If x, y satisfy the equation, y^(x)=x^(y) and x=2y , then x^(2)+y^(2)=

The equation x^(2)y^(2)-9y^(2)-6x^(2)y+54y=0 represents

If x^(2) + 9y^(2) = 1 , then minimum and maximum value of 3x^(2) - 27y^(2) + 24xy respectively

For x = 2 and y = -3, verify the following: (x-y)^(2)=x^(2)-2xy+y^(2)

Suppose x, y in (-2, 2) and xy=-1 , then the minimum value of a=4/(4-x^2)-9/(9-y^2) is

If x ,y in R , satisfies the equation ((x-4)^2)/4+(y^2)/9=1 , then the difference between the largest and the smallest valus of the expression (x^2)/4+(y^2)/9 is_____

If (y^(3)-2x^(2)y)dx+(2xy^(2)-x^(3))dy=0, then the value of xysqrt(y^(2)-x^(2)), is

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If x,y in R and satisfy the equation xy(x^(2)-y^(2))=x^(2)+y^(2) where...

    Text Solution

    |

  2. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  3. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  4. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  5. Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for theta ...

    Text Solution

    |

  6. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  7. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  8. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  9. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)^(...

    Text Solution

    |

  10. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  11. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  12. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  13. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  14. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  15. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  16. Let cos(alpha+beta)""=4/5 and let sin (alpha+beta)""=5/(13) where 0lt=...

    Text Solution

    |

  17. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  18. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  19. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  20. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |