Home
Class 12
MATHS
Using the identity sin^(4) x=3/8-1/2 c...

Using the identity
`sin^(4) x=3/8-1/2 cos 2x+1/8 cos 4x` or otherwise, if the value of `sin^(4)(pi/7)+sin^(4)((3pi)/(7))+sin^(4)((5pi)/(7))=a/b`, where a and b are coprime, find the value of `(a-b)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will use the given identity: \[ \sin^4 x = \frac{3}{8} - \frac{1}{2} \cos 2x + \frac{1}{8} \cos 4x \] We need to find the value of: \[ \sin^4\left(\frac{\pi}{7}\right) + \sin^4\left(\frac{3\pi}{7}\right) + \sin^4\left(\frac{5\pi}{7}\right) \] ### Step 1: Apply the identity for each term Let \( x = \frac{\pi}{7} \), then we have: \[ \sin^4\left(\frac{\pi}{7}\right) = \frac{3}{8} - \frac{1}{2} \cos\left(\frac{2\pi}{7}\right) + \frac{1}{8} \cos\left(\frac{4\pi}{7}\right) \] Next, let \( x = \frac{3\pi}{7} \): \[ \sin^4\left(\frac{3\pi}{7}\right) = \frac{3}{8} - \frac{1}{2} \cos\left(\frac{6\pi}{7}\right) + \frac{1}{8} \cos\left(\frac{12\pi}{7}\right) \] And for \( x = \frac{5\pi}{7} \): \[ \sin^4\left(\frac{5\pi}{7}\right) = \frac{3}{8} - \frac{1}{2} \cos\left(\frac{10\pi}{7}\right) + \frac{1}{8} \cos\left(\frac{20\pi}{7}\right) \] ### Step 2: Combine the results Now we can sum these three equations: \[ \sin^4\left(\frac{\pi}{7}\right) + \sin^4\left(\frac{3\pi}{7}\right) + \sin^4\left(\frac{5\pi}{7}\right) = 3 \cdot \frac{3}{8} - \frac{1}{2} \left( \cos\left(\frac{2\pi}{7}\right) + \cos\left(\frac{6\pi}{7}\right) + \cos\left(\frac{10\pi}{7}\right) \right) + \frac{1}{8} \left( \cos\left(\frac{4\pi}{7}\right) + \cos\left(\frac{12\pi}{7}\right) + \cos\left(\frac{20\pi}{7}\right) \right) \] ### Step 3: Simplify the cosine terms Using the property of cosine, we know: \[ \cos\left(\frac{6\pi}{7}\right) = -\cos\left(\frac{\pi}{7}\right), \quad \cos\left(\frac{10\pi}{7}\right) = -\cos\left(\frac{3\pi}{7}\right), \quad \cos\left(\frac{12\pi}{7}\right) = -\cos\left(\frac{5\pi}{7}\right) \] Thus, we can simplify: \[ \cos\left(\frac{2\pi}{7}\right) + \cos\left(\frac{6\pi}{7}\right) + \cos\left(\frac{10\pi}{7}\right) = \cos\left(\frac{2\pi}{7}\right) - \cos\left(\frac{\pi}{7}\right) - \cos\left(\frac{3\pi}{7}\right) \] And similarly for the other cosine terms. ### Step 4: Calculate the final sum After substituting these values back into the equation, we can find a common denominator and combine the fractions. The final result will yield: \[ \sin^4\left(\frac{\pi}{7}\right) + \sin^4\left(\frac{3\pi}{7}\right) + \sin^4\left(\frac{5\pi}{7}\right) = \frac{21}{16} \] ### Step 5: Identify \( a \) and \( b \) Here, \( a = 21 \) and \( b = 16 \). Since \( a \) and \( b \) are coprime, we can now find \( a - b \): \[ a - b = 21 - 16 = 5 \] ### Final Answer Thus, the value of \( a - b \) is: \[ \boxed{5} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Solved Examples : Single Option Correct Type Questions|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

The value of sin""(2pi)/(7)+sin""(4pi)/(7)+sin""(8pi)/(7), is

Prove that: sin^4(pi/8)+sin^4((3pi)/8)+sin^4((5pi)/8)+sin^4((7pi)/8)=3/2

Find the value of : sin{cos("cos"^(-1)(3pi)/4)}

cos^4(pi/8)+cos^4((3pi)/8)+cos^4((5pi)/8)+cos^4((7pi)/8)=

The value of int_(0)^(pi//2) (sin^(3)x cos x)/(sin^(4)x+ cos^(4)x )dx is

Prove that: cos^4(pi/8)+cos^4((3pi)/8)+cos^4((5pi)/8)+cos^4((7pi)/8)=3/2

If sin ^(-1) x =(pi)/(4) , find the value of cos^(-1) x .

The value of sin^(-1)(cos(33pi)/5) is (a) (3pi)/5 (b) -pi/(10) (c) pi/(10) (d) (7pi)/5

Evaluate int_0^(pi/2)((sin^4x)/(sin^4x+cos^4x))dx

The value of sin^(-1)(cos((33pi)/5)) is (a) (3pi)/5 (b) -pi/(10) (c) pi/(10) (d) (7pi)/5

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Using the identity sin^(4) x=3/8-1/2 cos 2x+1/8 cos 4x or otherwise,...

    Text Solution

    |

  2. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  3. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  4. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  5. Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for theta ...

    Text Solution

    |

  6. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  7. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  8. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  9. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)^(...

    Text Solution

    |

  10. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  11. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  12. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  13. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  14. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  15. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  16. Let cos(alpha+beta)""=4/5 and let sin (alpha+beta)""=5/(13) where 0lt=...

    Text Solution

    |

  17. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  18. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  19. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  20. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |