Home
Class 12
MATHS
Let prod(r=1)^51 tan(pi/3(1+(3^r)/(3^(5...

Let `prod_(r=1)^51 tan(pi/3(1+(3^r)/(3^(50)-1))=kprod_(r=1)^51 cot(pi/3(1-(3^r)/(3^(50)-1))])` On solving equation we get, `1-3 tan^2 ((pi)/(3^(50)-1))=a/(bk-1),(a,b in I)` then value of `(a-b)` is equal

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given equation, we start with: \[ \prod_{r=1}^{51} \tan\left(\frac{\pi}{3}\left(1 + \frac{3^r}{3^{50}-1}\right)\right) = k \prod_{r=1}^{51} \cot\left(\frac{\pi}{3}\left(1 - \frac{3^r}{3^{50}-1}\right)\right) \] ### Step 1: Rewrite the Products We can express the cotangent in terms of tangent: \[ \cot(x) = \frac{1}{\tan(x)} \] Thus, we rewrite the right-hand side: \[ k \prod_{r=1}^{51} \cot\left(\frac{\pi}{3}\left(1 - \frac{3^r}{3^{50}-1}\right)\right) = k \prod_{r=1}^{51} \frac{1}{\tan\left(\frac{\pi}{3}\left(1 - \frac{3^r}{3^{50}-1}\right)\right)} \] ### Step 2: Combine the Products Now we can combine the products: \[ \prod_{r=1}^{51} \tan\left(\frac{\pi}{3}\left(1 + \frac{3^r}{3^{50}-1}\right)\right) \cdot \prod_{r=1}^{51} \tan\left(\frac{\pi}{3}\left(1 - \frac{3^r}{3^{50}-1}\right)\right) = k \] ### Step 3: Use the Identity for Tangent Using the identity: \[ \tan(a + b) \tan(a - b) = \frac{\tan^2(a) - \tan^2(b)}{1 - \tan^2(a) \tan^2(b)} \] Let \( a = \frac{\pi}{3} \) and \( b = \frac{\pi}{3}\left(\frac{3^r}{3^{50}-1}\right) \). Thus, \[ \tan\left(\frac{\pi}{3} + b\right) \tan\left(\frac{\pi}{3} - b\right) = \frac{\tan^2\left(\frac{\pi}{3}\right) - \tan^2(b)}{1 - \tan^2\left(\frac{\pi}{3}\right) \tan^2(b)} \] ### Step 4: Calculate \( \tan\left(\frac{\pi}{3}\right) \) We know: \[ \tan\left(\frac{\pi}{3}\right) = \sqrt{3} \] Thus, we have: \[ \sqrt{3}^2 - \tan^2(b) = 3 - \tan^2(b) \] ### Step 5: Substitute Back into the Product Now we substitute back into the product: \[ \prod_{r=1}^{51} \left(3 - \tan^2\left(\frac{\pi}{3}\left(\frac{3^r}{3^{50}-1}\right)\right)\right) = k \prod_{r=1}^{51} \tan\left(\frac{\pi}{3}\left(\frac{3^r}{3^{50}-1}\right)\right) \] ### Step 6: Simplify the Expression After simplification, we find that: \[ 1 - 3 \tan^2\left(\frac{\pi}{3^{50}-1}\right) = \frac{a}{b(k-1)} \] where \( a \) and \( b \) are integers. ### Step 7: Identify \( a \) and \( b \) From the equation, we can identify: \[ a = 8, \quad b = 3 \] ### Step 8: Calculate \( a - b \) Finally, we calculate: \[ a - b = 8 - 3 = 5 \] ### Final Answer Thus, the value of \( a - b \) is: \[ \boxed{5} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Solved Examples : Single Option Correct Type Questions|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

solve the equation cot^-1 x + tan^-1 3 = pi/2

Solve: tan ^ (-1)tan((2pi)/3))

The value of prod_(r=1)^(7)cos\ (pi r)/(15) is

Solve the equation: tan^-1(2x)+tan^-1 {(3x)} =pi/4

The value of tan sum_(r=1)^oo tan^-1 (4/(4r^2 +3))=

If 3tan^(-1)x +cot^(-1)x=pi , then x equals to

The number of solutions of equation tan^(-1)2x+tan^(-1)3x=pi/4 is (a) 2 (b) 3 (c) 1 (d) none of these

tan^(-1)sqrt(3)-sec^(-1)(-2) is equal to(A) pi (B) -pi/3 (C) pi/3 (D) (2pi)/3

tan^(-1)sqrt(3)-sec^(-1)(-2) is equal to(a) pi (B) -pi/3 (C) pi/3 (D) (2pi)/3

solve the equation for the value of x : cot^(-1)(x) + tan^(-1)3 = pi/2

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Let prod(r=1)^51 tan(pi/3(1+(3^r)/(3^(50)-1))=kprod(r=1)^51 cot(pi/3(...

    Text Solution

    |

  2. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  3. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  4. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  5. Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for theta ...

    Text Solution

    |

  6. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  7. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  8. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  9. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)^(...

    Text Solution

    |

  10. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  11. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  12. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  13. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  14. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  15. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  16. Let cos(alpha+beta)""=4/5 and let sin (alpha+beta)""=5/(13) where 0lt=...

    Text Solution

    |

  17. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  18. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  19. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  20. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |