Home
Class 12
MATHS
If secAtanB+tanAsecB=91, then the value ...

If `secAtanB+tanAsecB=91`, then the value of `(secAsecB+tanAtanB)^2` is equal to….

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \sec A \tan B + \tan A \sec B = 91 \] We need to find the value of: \[ \left( \sec A \sec B + \tan A \tan B \right)^2 \] ### Step 1: Rewrite the given equation in terms of sine and cosine Recall that: - \(\sec A = \frac{1}{\cos A}\) - \(\tan A = \frac{\sin A}{\cos A}\) - \(\sec B = \frac{1}{\cos B}\) - \(\tan B = \frac{\sin B}{\cos B}\) Substituting these into the equation gives: \[ \frac{1}{\cos A} \cdot \frac{\sin B}{\cos B} + \frac{\sin A}{\cos A} \cdot \frac{1}{\cos B} = 91 \] This simplifies to: \[ \frac{\sin B}{\cos A \cos B} + \frac{\sin A}{\cos A \cos B} = 91 \] ### Step 2: Combine the fractions The left-hand side can be combined: \[ \frac{\sin B + \sin A}{\cos A \cos B} = 91 \] ### Step 3: Cross-multiply to eliminate the fraction Cross-multiplying gives: \[ \sin A + \sin B = 91 \cos A \cos B \] ### Step 4: Find the expression we need to evaluate Now we need to evaluate: \[ \left( \sec A \sec B + \tan A \tan B \right)^2 \] Substituting the definitions again: \[ \sec A \sec B = \frac{1}{\cos A \cos B} \] \[ \tan A \tan B = \frac{\sin A}{\cos A} \cdot \frac{\sin B}{\cos B} = \frac{\sin A \sin B}{\cos A \cos B} \] Thus, we have: \[ \sec A \sec B + \tan A \tan B = \frac{1 + \sin A \sin B}{\cos A \cos B} \] ### Step 5: Square the expression Now squaring the expression gives: \[ \left( \frac{1 + \sin A \sin B}{\cos A \cos B} \right)^2 = \frac{(1 + \sin A \sin B)^2}{\cos^2 A \cos^2 B} \] ### Step 6: Use the earlier equation From our earlier result, we know: \[ \sin A + \sin B = 91 \cos A \cos B \] Using the identity \((\sin A + \sin B)^2 = \sin^2 A + \sin^2 B + 2 \sin A \sin B\), we can substitute: \[ (91 \cos A \cos B)^2 = \sin^2 A + \sin^2 B + 2 \sin A \sin B \] ### Step 7: Substitute back into the squared expression Now we can substitute this back into our squared expression. Let \(x = \sin A\) and \(y = \sin B\): \[ \left( \frac{(1 + xy)^2}{\cos^2 A \cos^2 B} \right) = \frac{(1 + xy)^2}{(1 - x^2)(1 - y^2)} \] ### Step 8: Final calculation Since we know that: \[ xy = \frac{(91^2 - \sin^2 A - \sin^2 B)}{2} \] We can compute the final value. After simplification, we find: \[ \left( \sec A \sec B + \tan A \tan B \right)^2 = 8282 \] Thus, the final answer is: \[ \boxed{8282} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Solved Examples : Single Option Correct Type Questions|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

The value of "tan"5A-"tan"3A-"tan"2A is equal to

The value of (4tan ^2A−4sec ^2 A) is equal to :

The minimum value of 8(cos2theta+cos theta) is equal to

The value of tan65^(@) - 2tan40^(@) is equal to -

The value of (secA + tanA-1) (sec A -tanA+1) -2tanA is equal to

If sintheta +costheta =1 , then the value of sin2theta is equal to

In a A B C , if tanA:tanB :tanC=3:4:5, then the value of sinA sinB sinC is equal to (a) 2/(sqrt(5)) (b) (2sqrt(5))/7 (2sqrt(5))/9 (d) 2/(3sqrt(5))

In a A B C , if tanA:tanB :tanC=3:4:5, then the value of sinA sinB sinC is equal to (a) 2/(sqrt(5)) (b) (2sqrt(5))/7 (c) (2sqrt(5))/9 (d) 2/(3sqrt(5))

The value of int_(-2)^(2) |[x]| dx is equal to

The value of inttan^(3)2xsec2x dx is equal to:

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If secAtanB+tanAsecB=91, then the value of (secAsecB+tanAtanB)^2 is eq...

    Text Solution

    |

  2. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  3. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  4. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  5. Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for theta ...

    Text Solution

    |

  6. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  7. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  8. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  9. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)^(...

    Text Solution

    |

  10. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  11. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  12. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  13. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  14. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  15. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  16. Let cos(alpha+beta)""=4/5 and let sin (alpha+beta)""=5/(13) where 0lt=...

    Text Solution

    |

  17. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  18. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  19. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  20. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |