Home
Class 12
MATHS
If 0 lt A lt pi//2 and sinA + cosA + tan...

If `0 lt A lt pi//2` and sinA + cosA + tan A + cotA + secA + cosec A=7 and sinA and cosA are roots of equation `4x^(2) - 3x +a=0`. Then value of 25a is:

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given equation and the conditions provided. ### Step 1: Write down the given equation We have the equation: \[ \sin A + \cos A + \tan A + \cot A + \sec A + \csc A = 7 \] ### Step 2: Use the properties of roots We know that \(\sin A\) and \(\cos A\) are the roots of the quadratic equation: \[ 4x^2 - 3x + a = 0 \] From Vieta's formulas, we can derive two important relationships: 1. The sum of the roots \(\sin A + \cos A = -\frac{-3}{4} = \frac{3}{4}\) 2. The product of the roots \(\sin A \cos A = \frac{a}{4}\) ### Step 3: Express \(\tan A\), \(\cot A\), \(\sec A\), and \(\csc A\) Using the definitions of the trigonometric functions: - \(\tan A = \frac{\sin A}{\cos A}\) - \(\cot A = \frac{\cos A}{\sin A}\) - \(\sec A = \frac{1}{\cos A}\) - \(\csc A = \frac{1}{\sin A}\) ### Step 4: Substitute into the equation Now we can substitute these into the original equation: \[ \sin A + \cos A + \frac{\sin A}{\cos A} + \frac{\cos A}{\sin A} + \frac{1}{\cos A} + \frac{1}{\sin A} = 7 \] Let \(S = \sin A + \cos A = \frac{3}{4}\). ### Step 5: Simplify the equation Now we can rewrite the equation: \[ S + \frac{\sin^2 A + \cos^2 A}{\sin A \cos A} + \frac{1}{\sin A} + \frac{1}{\cos A} = 7 \] Since \(\sin^2 A + \cos^2 A = 1\), we have: \[ \frac{1}{\sin A \cos A} + \frac{1}{\sin A} + \frac{1}{\cos A} = 7 - S \] Substituting \(S = \frac{3}{4}\): \[ \frac{1}{\sin A \cos A} + \frac{1}{\sin A} + \frac{1}{\cos A} = 7 - \frac{3}{4} = \frac{28 - 3}{4} = \frac{25}{4} \] ### Step 6: Substitute \(\sin A \cos A\) Let \(P = \sin A \cos A = \frac{a}{4}\): \[ \frac{4}{a} + \frac{1}{\sin A} + \frac{1}{\cos A} = \frac{25}{4} \] Using the identities: \[ \frac{1}{\sin A} + \frac{1}{\cos A} = \frac{\sin A + \cos A}{\sin A \cos A} = \frac{S}{P} = \frac{\frac{3}{4}}{\frac{a}{4}} = \frac{3}{a} \] Thus, we have: \[ \frac{4}{a} + \frac{3}{a} = \frac{25}{4} \] Combining terms gives: \[ \frac{7}{a} = \frac{25}{4} \] ### Step 7: Solve for \(a\) Cross-multiplying gives: \[ 7 \cdot 4 = 25a \implies 28 = 25a \implies a = \frac{28}{25} \] ### Step 8: Find \(25a\) Finally, we need to find \(25a\): \[ 25a = 25 \cdot \frac{28}{25} = 28 \] Thus, the value of \(25a\) is: \[ \boxed{28} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Solved Examples : Single Option Correct Type Questions|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

cosα is a root of the equation 25x^2+5x−12=0,−1 lt x lt 0 , then find the value of sin2α is:

If an angle A of a triangle ABC is given by 3 tanA+1=0 , then sinA and cosA are the roots of the equation

If 0 lt alpha lt pi/6 , then the value of (alpha cosec alpha ) is

If sinA+cosA=0 and A lies in 4th quadrant, find the values of sinA and cosA.

If A lies in the third quadrant and 3 tan A-4 = 0, then 5 sin 2A + 3sinA + 4 cosA is equal to

If sinA = 3/5 and 0^@ lt A lt 90^@ , find the value of sin 2A, cos 2A, tan 2A, and sin 4A .

If 0 lt x lt (pi)/(2) and tan 5x = 3 , to the nearest tenth , what is the value of tan x ?

If sinA and cosA are the roots of the equation 4x^(2)-3x+a=0, sinA+cosA+tanA+cotA+secA+"cosec "A=7 and 0 lt A lt (pi)/(2) , then the value of a must be

Prove that: sinA(1+tanA)+cosA(1+cotA)= secA+"cosec"A

If sinA=-4/5 and pi lt A lt (3pi)/2 , find the value of (cosecA+cotA)/(secA-tanA)

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If 0 lt A lt pi//2 and sinA + cosA + tan A + cotA + secA + cosec A=7 a...

    Text Solution

    |

  2. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  3. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  4. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  5. Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for theta ...

    Text Solution

    |

  6. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  7. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  8. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  9. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)^(...

    Text Solution

    |

  10. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  11. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  12. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  13. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  14. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  15. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  16. Let cos(alpha+beta)""=4/5 and let sin (alpha+beta)""=5/(13) where 0lt=...

    Text Solution

    |

  17. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  18. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  19. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  20. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |