Home
Class 12
MATHS
If (1)/(cos 290^(@))+(1)/(sqrt(3)sin 25...

If `(1)/(cos 290^(@))+(1)/(sqrt(3)sin 250^(@))=lambda`, then the value of `9 lambda^(4)+81 lambda^(2)+97` must be

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\frac{1}{\cos 290^\circ} + \frac{1}{\sqrt{3} \sin 250^\circ} = \lambda\), we will follow these steps: ### Step 1: Rewrite the trigonometric functions We can rewrite the trigonometric functions using their identities: \[ \cos 290^\circ = \cos(270^\circ + 20^\circ) = \sin 20^\circ \] \[ \sin 250^\circ = \sin(270^\circ - 20^\circ) = -\cos 20^\circ \] Thus, we can express \(\lambda\) as: \[ \lambda = \frac{1}{\sin 20^\circ} + \frac{1}{\sqrt{3} (-\cos 20^\circ)} \] ### Step 2: Simplify the expression for \(\lambda\) This simplifies to: \[ \lambda = \frac{1}{\sin 20^\circ} - \frac{1}{\sqrt{3} \cos 20^\circ} \] To combine these fractions, we need a common denominator: \[ \lambda = \frac{\cos 20^\circ - \frac{1}{\sqrt{3}} \sin 20^\circ}{\sin 20^\circ \cos 20^\circ} \] ### Step 3: Multiply numerator and denominator Multiply the numerator and denominator by 2: \[ \lambda = \frac{2(\cos 20^\circ - \frac{1}{\sqrt{3}} \sin 20^\circ)}{2 \sin 20^\circ \cos 20^\circ} \] Using the identity \(2 \sin 20^\circ \cos 20^\circ = \sin 40^\circ\), we have: \[ \lambda = \frac{2(\cos 20^\circ - \frac{1}{\sqrt{3}} \sin 20^\circ)}{\sin 40^\circ} \] ### Step 4: Further simplify the numerator The numerator can be rewritten using the sine subtraction formula: \[ \lambda = \frac{2\left(\sin 60^\circ \cos 20^\circ - \cos 60^\circ \sin 20^\circ\right)}{\sin 40^\circ} \] This simplifies to: \[ \lambda = \frac{2 \sin(60^\circ - 20^\circ)}{\sin 40^\circ} = \frac{2 \sin 40^\circ}{\sin 40^\circ} = 2 \] ### Step 5: Calculate \(9\lambda^4 + 81\lambda^2 + 97\) Now substituting \(\lambda = 2\): \[ 9\lambda^4 + 81\lambda^2 + 97 = 9(2^4) + 81(2^2) + 97 \] Calculating each term: \[ = 9(16) + 81(4) + 97 = 144 + 324 + 97 = 565 \] ### Final Answer Thus, the value of \(9\lambda^4 + 81\lambda^2 + 97\) is: \[ \boxed{565} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Solved Examples : Single Option Correct Type Questions|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

If sin2A=lambdasin2B , then write the value of (lambda+1)/(lambda-1) .

if mu_21 is 1.5, then find the value of lambda_1/lambda_2.

If the value of lim_(xrarr(pi)/(6))(cos(x+(pi)/(3)))/((1-sqrt3tanx)) is equal to lambda , then the value of 120lambda^(2) is equal to

If cos e c^2theta(1+costheta)(1-costheta)=lambda , then find the value of lambda .

The value of lim_(xrarr0)(1)/(x^(18))(1-cos((x^(3))/(3))-cos((x^(6))/(6))+cos((x^(3))/(3)).cos((x^(6))/(6))= lambda^(2) , then the value of 900lambda is equal to ("here, "lambda gt 0)

(3+omega + 3 omega^(2))^(4)= lambda omega , then value of lambda is :

If A=sqrt(3) cot 20^(@) - 4 cos20^(@) and B= sin12^(@) sin48^(@) sin54^(@) be such that A + lambdaB=2 , then the value of lambda^(3) +2000 is …………….

If sin^2thetacos^2theta(1+tan^2theta)(1+cot^2theta)=lambda , then find the value of lambda .

If the matrix A = [[lambda_(1)^(2), lambda_(1)lambda_(2), lambda_(1) lambda_(3)],[lambda_(2)lambda_(1),lambda_(2)^(2),lambda_(2)lambda_(3)],[lambda_(3)lambda_(1),lambda_(3)lambda_(2),lambda_(3)^(2)]] is idempotent, the value of lambda_(1)^(2) + lambda_(2)^(2) + lambda _(3)^(2) is

The minimum value of x which satisfies the inequality sin^(-1)x ge cos^(-1)x is lambda , then the value of 2lambda is (use sqrt2=1.41 )

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If (1)/(cos 290^(@))+(1)/(sqrt(3)sin 250^(@))=lambda, then the value ...

    Text Solution

    |

  2. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  3. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  4. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  5. Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for theta ...

    Text Solution

    |

  6. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  7. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  8. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  9. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)^(...

    Text Solution

    |

  10. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  11. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  12. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  13. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  14. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  15. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  16. Let cos(alpha+beta)""=4/5 and let sin (alpha+beta)""=5/(13) where 0lt=...

    Text Solution

    |

  17. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  18. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  19. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  20. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |