Home
Class 12
MATHS
If (log)(10)sinx+(log)(10)cosx=-1a n d(l...

If `(log)_(10)sinx+(log)_(10)cosx=-1a n d(log)_(10)(sinx+cosx)=(((log)_(10)n)-1)/2,` then the value of `' n//3'` is_______

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the two given equations: 1. \( \log_{10}(\sin x) + \log_{10}(\cos x) = -1 \) 2. \( \log_{10}(\sin x + \cos x) = \frac{\log_{10}(n) - 1}{2} \) ### Step 1: Simplify the first equation Using the property of logarithms that states \( \log_a(m) + \log_a(n) = \log_a(m \cdot n) \), we can combine the logs in the first equation: \[ \log_{10}(\sin x \cdot \cos x) = -1 \] ### Step 2: Exponentiate to remove the logarithm To eliminate the logarithm, we exponentiate both sides: \[ \sin x \cdot \cos x = 10^{-1} = \frac{1}{10} \] ### Step 3: Use the identity for sine and cosine We know that \( \sin x \cdot \cos x = \frac{1}{2} \sin(2x) \). Therefore, we can write: \[ \frac{1}{2} \sin(2x) = \frac{1}{10} \] ### Step 4: Solve for \( \sin(2x) \) Multiplying both sides by 2 gives: \[ \sin(2x) = \frac{2}{10} = \frac{1}{5} \] ### Step 5: Substitute into the second equation Now we will use the second equation. We need to express \( \sin x + \cos x \) in terms of \( \sin(2x) \). We know that: \[ \sin^2 x + \cos^2 x = 1 \] Let \( t = \sin x + \cos x \). Then: \[ t^2 = \sin^2 x + \cos^2 x + 2\sin x \cos x = 1 + 2\left(\frac{1}{10}\right) = 1 + \frac{1}{5} = \frac{6}{5} \] Thus, \[ t = \sqrt{\frac{6}{5}} \] ### Step 6: Substitute \( t \) into the second equation Now we substitute \( t \) into the second equation: \[ \log_{10}\left(\sqrt{\frac{6}{5}}\right) = \frac{\log_{10}(n) - 1}{2} \] ### Step 7: Simplify the left side Using the property of logarithms \( \log_a(m^n) = n \log_a(m) \): \[ \frac{1}{2} \log_{10}\left(\frac{6}{5}\right) = \frac{\log_{10}(n) - 1}{2} \] ### Step 8: Multiply through by 2 Multiplying through by 2 gives: \[ \log_{10}\left(\frac{6}{5}\right) = \log_{10}(n) - 1 \] ### Step 9: Rearranging to find \( n \) Adding 1 to both sides: \[ \log_{10}(n) = \log_{10}\left(\frac{6}{5}\right) + 1 \] This can be rewritten as: \[ \log_{10}(n) = \log_{10}\left(\frac{6}{5} \cdot 10\right) = \log_{10}(12) \] ### Step 10: Solve for \( n \) Thus, we find: \[ n = 12 \] ### Step 11: Find \( \frac{n}{3} \) Finally, we calculate: \[ \frac{n}{3} = \frac{12}{3} = 4 \] ### Final Answer The value of \( \frac{n}{3} \) is \( \boxed{4} \).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Solved Examples : Single Option Correct Type Questions|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

If "log"_(10) sin x+"log"_(10)cos x=-1 and "log"_(10)(sin x+cosx)=(("log"_(10)n)n-1)/(2) then the value of n is ____________

((log)_(10)(x-3))/((log)_(10)(x^2-21))=1/2 then find x.

If log_(10)(sin(x+pi/4))=(log_(10)6-1)/2 , the value of log_(10)(sinx)+log_(10)(cosx) is

If log_(10)(x-1)^3-3log_(10)(x-3)=log_(10)8,then log_(x)625 has the value equal to :

If (1)/("log"_(x)10) = (2)/("log"_(a)10)-2 , then x =

If x in (0, (pi)/(2)) and sinx=(3)/(sqrt(10)) , Let k=log_(10)sinx+log_(10)cos x+2log_(10)cot x +log_(10) tan x then the value of k satisfies

If log_(10)2,log_(10)(2^(x)-1) and log_(10)(2^(x)+3) are in A.P then the value of x is

"If" ("log"_(10)a)/(2) = ("log"_(10)b)/(3) = ("log"_(10)c)/(5) , then bc =

Given (log _(10 ) ^(16))/(log _(10 ) ^(2)) = log _(10 ) ^(a) find the value of ( a+ 100) .

If int_(0)^(4pi)ln|13sinx+3sqrt3cosx|dx=kpiln7 , then the value of k is

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If (log)(10)sinx+(log)(10)cosx=-1a n d(log)(10)(sinx+cosx)=(((log)(10)...

    Text Solution

    |

  2. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  3. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  4. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  5. Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for theta ...

    Text Solution

    |

  6. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  7. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  8. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  9. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)^(...

    Text Solution

    |

  10. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  11. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  12. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  13. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  14. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  15. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  16. Let cos(alpha+beta)""=4/5 and let sin (alpha+beta)""=5/(13) where 0lt=...

    Text Solution

    |

  17. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  18. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  19. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  20. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |