Home
Class 12
MATHS
If atanalpha+sqrt(a^2-1)tanbeta+sqrt(a^...

If `atanalpha+sqrt(a^2-1)tanbeta+sqrt(a^2+1)tangamma=2a` where a is a constant and `alpha,beta and gamma` are variable angles. Then the least value of `tan^2alpha+tan^2beta+tan^2gamma` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \tan \alpha + \sqrt{a^2 - 1} \tan \beta + \sqrt{a^2 + 1} \tan \gamma = 2a \] where \( a \) is a constant and \( \alpha, \beta, \gamma \) are variable angles. We need to find the least value of \( \tan^2 \alpha + \tan^2 \beta + \tan^2 \gamma \). ### Step 1: Rewrite the equation in vector form We can express the equation in a vector form. Let: \[ \mathbf{A} = a \hat{i} + \sqrt{a^2 - 1} \hat{j} + \sqrt{a^2 + 1} \hat{k} \] and \[ \mathbf{B} = \tan \alpha \hat{i} + \tan \beta \hat{j} + \tan \gamma \hat{k} \] The equation then becomes: \[ \mathbf{A} \cdot \mathbf{B} = 2a \] ### Step 2: Calculate the magnitudes of vectors The magnitude of vector \( \mathbf{A} \) is: \[ |\mathbf{A}| = \sqrt{a^2 + (a^2 - 1) + (a^2 + 1)} = \sqrt{3a^2} = \sqrt{3}a \] The magnitude of vector \( \mathbf{B} \) is: \[ |\mathbf{B}| = \sqrt{\tan^2 \alpha + \tan^2 \beta + \tan^2 \gamma} \] ### Step 3: Use the dot product formula Using the dot product formula: \[ \mathbf{A} \cdot \mathbf{B} = |\mathbf{A}| |\mathbf{B}| \cos \theta \] we can write: \[ \sqrt{3}a \sqrt{\tan^2 \alpha + \tan^2 \beta + \tan^2 \gamma} \cos \theta = 2a \] ### Step 4: Simplify the equation Dividing both sides by \( a \) (assuming \( a \neq 0 \)) gives: \[ \sqrt{3} \sqrt{\tan^2 \alpha + \tan^2 \beta + \tan^2 \gamma} \cos \theta = 2 \] ### Step 5: Isolate the square root Now, isolating \( \sqrt{\tan^2 \alpha + \tan^2 \beta + \tan^2 \gamma} \): \[ \sqrt{\tan^2 \alpha + \tan^2 \beta + \tan^2 \gamma} = \frac{2}{\sqrt{3} \cos \theta} \] ### Step 6: Square both sides Squaring both sides gives: \[ \tan^2 \alpha + \tan^2 \beta + \tan^2 \gamma = \frac{4}{3 \cos^2 \theta} \] ### Step 7: Find the minimum value The minimum value of \( \sec^2 \theta \) is 1 (when \( \cos \theta = 1 \)), thus: \[ \tan^2 \alpha + \tan^2 \beta + \tan^2 \gamma \geq \frac{4}{3} \] ### Conclusion Therefore, the least value of \( \tan^2 \alpha + \tan^2 \beta + \tan^2 \gamma \) is: \[ \boxed{\frac{4}{3}} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Solved Examples : Single Option Correct Type Questions|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma are acute angles and costheta=sinbeta//sinalpha,cosvarphi=singamma//sinalpha and cos(theta-varphi) = sinbetasingamma , then the value of tan^2alpha-tan^2beta-tan^2gamma is equal to (a) -1 (b) 0 (c) 1 (d) 2

If alpha,beta,gamma are ccute angles and costheta=sinbeta//sinalpha,cosvarphi=singammasinalphaa n dcos(theta-varphi)=sinbetasingamma , then the value of tan^2alpha-tan^2beta-tan^2gamma is equal to -1 (b) 0 (c) 1 (d) 2

If the direction angles of a line are alpha, beta and gamma respectively, then cos 2 alpha + cos 2 beta + cos 2gamma is equal to

If alpha, beta, gamma, delta satisfy the equation tan(x+(pi)/(4))=3 tan3x , then tanalpha+tanbeta+tangamma+tandelta is equal to :

If a, b, c and k are real constants and alpha, beta, gamma are variables subject to the condition that a tanalpha + btanbeta+ c tangamma=k , then prove using vectors that tan^2 alpha + tan^2 beta+ tan^2gamma>= k^2 /(a^2 + b^2 + c^2)

If alpha and beta are the solution of cotx=-sqrt3 in [0, 2pi] and alpha and gamma are the roots of "cosec x"=-2 in [0, 2pi] , then the value of (|alpha-beta|)/(beta+gamma) is equal to

If tan alpha =m/(m+1) and tan beta =1/(2m+1) , then alpha+beta is equal to

If tan^2 alpha tan^2 beta + tan^2 beta tan^2 gamma + tan^2 gamma tan^2 alpha + 2 tan^2 alpha tan^2 beta tan^2 gamma = 1 then sin^2 alpha + sin^2 beta + sin^2 gamma =

If a right angle be divided into three parts alpha, beta and gamma , prove that cot alpha = (tan beta + tan gamma)/(1-tan beta tan gamma) .

If 2 sin alphacos beta sin gamma=sinbeta sin(alpha+gamma),then tan alpha,tan beta and gamma are in

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If atanalpha+sqrt(a^2-1)tanbeta+sqrt(a^2+1)tangamma=2a where a is a c...

    Text Solution

    |

  2. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  3. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  4. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  5. Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for theta ...

    Text Solution

    |

  6. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  7. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  8. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  9. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)^(...

    Text Solution

    |

  10. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  11. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  12. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  13. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  14. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  15. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  16. Let cos(alpha+beta)""=4/5 and let sin (alpha+beta)""=5/(13) where 0lt=...

    Text Solution

    |

  17. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  18. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  19. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  20. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |