Home
Class 12
MATHS
The inequality 2^(sintheta)+2^(costheta)...

The inequality `2^(sintheta)+2^(costheta)ge2^(1-1/sqrt(2))`,holds for all real values of `theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( 2^{\sin \theta} + 2^{\cos \theta} \geq 2^{1 - \frac{1}{\sqrt{2}}} \) for all real values of \( \theta \), we will follow these steps: ### Step 1: Rewrite the Inequality We start with the given inequality: \[ 2^{\sin \theta} + 2^{\cos \theta} \geq 2^{1 - \frac{1}{\sqrt{2}}} \] ### Step 2: Apply the Arithmetic Mean-Geometric Mean (AM-GM) Inequality We can apply the AM-GM inequality, which states that for any non-negative numbers \( a \) and \( b \): \[ \frac{a + b}{2} \geq \sqrt{ab} \] Let \( a = 2^{\sin \theta} \) and \( b = 2^{\cos \theta} \). Then we have: \[ \frac{2^{\sin \theta} + 2^{\cos \theta}}{2} \geq \sqrt{2^{\sin \theta} \cdot 2^{\cos \theta}} \] This simplifies to: \[ 2^{\sin \theta} + 2^{\cos \theta} \geq 2 \sqrt{2^{\sin \theta + \cos \theta}} = 2 \cdot 2^{\frac{\sin \theta + \cos \theta}{2}} = 2^{1 + \frac{\sin \theta + \cos \theta}{2}} \] ### Step 3: Analyze \( \sin \theta + \cos \theta \) We know that: \[ \sin \theta + \cos \theta = \sqrt{2} \sin\left(\theta + \frac{\pi}{4}\right) \] This means: \[ \sin \theta + \cos \theta \leq \sqrt{2} \] Thus, \[ \frac{\sin \theta + \cos \theta}{2} \leq \frac{\sqrt{2}}{2} \] ### Step 4: Substitute Back Substituting this back into our inequality gives: \[ 2^{1 + \frac{\sin \theta + \cos \theta}{2}} \geq 2^{1 + \frac{\sqrt{2}}{2}} \] This means: \[ 2^{\sin \theta} + 2^{\cos \theta} \geq 2^{1 + \frac{\sqrt{2}}{2}} \] ### Step 5: Compare with the Right Side We need to show that: \[ 2^{1 + \frac{\sqrt{2}}{2}} \geq 2^{1 - \frac{1}{\sqrt{2}}} \] This simplifies to: \[ 1 + \frac{\sqrt{2}}{2} \geq 1 - \frac{1}{\sqrt{2}} \] Subtracting 1 from both sides gives: \[ \frac{\sqrt{2}}{2} \geq -\frac{1}{\sqrt{2}} \] Multiplying through by \( \sqrt{2} \) (which is positive) gives: \[ 1 \geq -1 \] This is always true. ### Conclusion Thus, we have shown that: \[ 2^{\sin \theta} + 2^{\cos \theta} \geq 2^{1 - \frac{1}{\sqrt{2}}} \] holds for all real values of \( \theta \).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Solved Examples : Single Option Correct Type Questions|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

If costheta=(1)/(sqrt(2)) ,then find the value of cos2theta .

If costheta=(1)/(sqrt(2)) ,then find the value of (tan^(2)theta+1) .

Minimum value of cos2theta+costheta for all real value of theta is

If for the matrix A=[(costheta, 2sintheta),(sintheta,costheta)],A^(-1)=A^(T) then number of possible value(s) of theta in [0, 2pi] is :

Find maximum and minium value of 5costheta+3sintheta(theta+pi/6) for all real values of theta .

Prove that (1-sintheta+costheta)^2=2(1+costheta)(1-sintheta)

If sintheta+ costheta=1 , then find the general value of theta .

Show that the line (x-2)costheta+(y-2)sintheta=1 touches a circle for all values of theta .Find the circle.

if (1-costheta)/(sintheta)=(sqrt(3))/(3) , then theta =

(sintheta)/(1+costheta)+(1+costheta)/(sintheta)=2cosectheta

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. The inequality 2^(sintheta)+2^(costheta)ge2^(1-1/sqrt(2)),holds for al...

    Text Solution

    |

  2. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  3. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  4. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  5. Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for theta ...

    Text Solution

    |

  6. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  7. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  8. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  9. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)^(...

    Text Solution

    |

  10. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  11. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  12. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  13. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  14. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  15. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  16. Let cos(alpha+beta)""=4/5 and let sin (alpha+beta)""=5/(13) where 0lt=...

    Text Solution

    |

  17. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  18. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  19. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  20. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |