Home
Class 12
MATHS
If (tan 3A)/(tan A)=k, show that ( sin ...

If `(tan 3A)/(tan A)=k`, show that `( sin 3A)/(sin A)= (2k)/(k-1)` and hence or otherwise prove that either `k gt 3` or `k lt 1/3`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \frac{\tan 3A}{\tan A} = k \] ### Step 1: Express \(\tan 3A\) in terms of \(\tan A\) Using the tangent triple angle formula: \[ \tan 3A = \frac{3\tan A - \tan^3 A}{1 - 3\tan^2 A} \] Substituting this into the given equation: \[ \frac{3\tan A - \tan^3 A}{1 - 3\tan^2 A} = k \] ### Step 2: Clear the fraction Multiply both sides by \(1 - 3\tan^2 A\): \[ 3\tan A - \tan^3 A = k(1 - 3\tan^2 A) \] ### Step 3: Rearranging the equation Rearranging gives us: \[ 3\tan A - \tan^3 A = k - 3k\tan^2 A \] Rearranging further, we have: \[ \tan^3 A - 3k\tan^2 A + 3\tan A - k = 0 \] ### Step 4: Let \(x = \tan A\) Let \(x = \tan A\), then the equation becomes: \[ x^3 - 3kx^2 + 3x - k = 0 \] ### Step 5: Find \(\frac{\sin 3A}{\sin A}\) Using the sine triple angle formula: \[ \sin 3A = 3\sin A - 4\sin^3 A \] Thus, \[ \frac{\sin 3A}{\sin A} = \frac{3\sin A - 4\sin^3 A}{\sin A} = 3 - 4\sin^2 A \] ### Step 6: Express \(\sin^2 A\) in terms of \(\tan^2 A\) Since \(\sin^2 A = \frac{\tan^2 A}{1 + \tan^2 A}\), we can substitute: \[ \sin^2 A = \frac{x^2}{1 + x^2} \] ### Step 7: Substitute \(\sin^2 A\) into the sine ratio Substituting this into the sine ratio: \[ \frac{\sin 3A}{\sin A} = 3 - 4\left(\frac{x^2}{1 + x^2}\right) = 3 - \frac{4x^2}{1 + x^2} \] ### Step 8: Find a common denominator Combining the terms gives: \[ \frac{\sin 3A}{\sin A} = \frac{3(1 + x^2) - 4x^2}{1 + x^2} = \frac{3 + 3x^2 - 4x^2}{1 + x^2} = \frac{3 - x^2}{1 + x^2} \] ### Step 9: Relate \(\tan^2 A\) to \(k\) From earlier, we know: \[ x^2 = \frac{k - 3}{3k - 1} \] Substituting this back into the sine ratio: \[ \frac{\sin 3A}{\sin A} = \frac{3 - \frac{k - 3}{3k - 1}}{1 + \frac{k - 3}{3k - 1}} = \frac{(3(3k - 1) - (k - 3))}{(3k - 1) + (k - 3)} \] ### Step 10: Simplify the expression This simplifies to: \[ \frac{(9k - 3 - k + 3)}{(3k - 1 + k - 3)} = \frac{(8k)}{(4k - 4)} = \frac{2k}{k - 1} \] Thus, we have shown: \[ \frac{\sin 3A}{\sin A} = \frac{2k}{k - 1} \] ### Step 11: Prove that \(k > 3\) or \(k < \frac{1}{3}\) From the derived expression for \(\tan^2 A\): \[ \tan^2 A = \frac{k - 3}{3k - 1} \] For \(\tan^2 A\) to be non-negative, we need: 1. \(k - 3 \geq 0\) and \(3k - 1 > 0\) which gives \(k \geq 3\). 2. \(k - 3 < 0\) and \(3k - 1 < 0\) which gives \(k < \frac{1}{3}\). Thus, we conclude: \[ k > 3 \quad \text{or} \quad k < \frac{1}{3} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Solved Examples : Single Option Correct Type Questions|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

If (tan3A)/(tanA)=k, then (sin3A)/(sinA)=

If (cosA)/(1-sinA)=tan(k+A/2), then k=

A+ B = C and tan A = k tan B , then prove that sin (A-B) = (k-1)/(k+1) sin C

If cosA=(3)/(4) and k sin ((A)/(2))sin((5A)/(2))=(11)/(8) . Find k.

If tan3A=(3 tan A+k tan^(3)A)/(1-3 tan^(2)A) , then k is equal to

If (tan3A)/(tanA)=k(k!=1) then which of the following is not true? (a) (cosA)/(cos3A)=(k-1)/2 (b) (sin3A)/(sinA)=(2k)/(k-1) (c) (cot3A)/(cotA)=1/k (d) none of these

If cosA=kcos(A-2B) , prove that: tan(A-B)tanB= (1-k)/(1+k)

If the roots of the equation 2x^(2) + (k + 1) x + (k^(2) - 5k + 6) = 0 are of opposite signes then show that 2 lt k lt 3.

If (k - 3), (2k + 1) and (4k + 3) are three consecutive terms of an A.P., find the value of k.

Show that the points (3, 3), (h, 0) and (0,k) are collinear if 1/h + 1/k = 1/3

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If (tan 3A)/(tan A)=k, show that ( sin 3A)/(sin A)= (2k)/(k-1) and he...

    Text Solution

    |

  2. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  3. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  4. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  5. Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for theta ...

    Text Solution

    |

  6. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  7. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  8. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  9. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)^(...

    Text Solution

    |

  10. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  11. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  12. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  13. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  14. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  15. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  16. Let cos(alpha+beta)""=4/5 and let sin (alpha+beta)""=5/(13) where 0lt=...

    Text Solution

    |

  17. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  18. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  19. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  20. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |