Home
Class 12
MATHS
If (sin^4theta)/a+(cos^4theta)/b=1/(a+b)...

If `(sin^4theta)/a+(cos^4theta)/b=1/(a+b)` , prove that `(sin^8theta)/(a^3)+(cos^4theta)/(b^3)=1/((a+b)^3)` `(sin^(4n)theta)/(a^(2n-1))+(cos^(4n)theta)/(b^(2n-1))=1/((a+b)^(2n-1)),n in N`

Text Solution

AI Generated Solution

The correct Answer is:
To prove the given equations, we will follow the steps outlined in the video transcript. Let's break it down step by step. ### Given: \[ \frac{\sin^4 \theta}{a} + \frac{\cos^4 \theta}{b} = \frac{1}{a+b} \] ### To Prove: 1. \(\frac{\sin^8 \theta}{a^3} + \frac{\cos^4 \theta}{b^3} = \frac{1}{(a+b)^3}\) 2. \(\frac{\sin^{4n} \theta}{a^{2n-1}} + \frac{\cos^{4n} \theta}{b^{2n-1}} = \frac{1}{(a+b)^{2n-1}}, n \in \mathbb{N}\) ### Step 1: Start with the given equation From the given equation, we can multiply through by \(ab(a+b)\) to eliminate the denominators: \[ b \sin^4 \theta + a \cos^4 \theta = \frac{ab}{a+b} \] ### Step 2: Use the identity Using the identity \(\sin^2 \theta + \cos^2 \theta = 1\), we can express \(1\) in terms of \(\sin^2 \theta\) and \(\cos^2 \theta\): \[ b \sin^4 \theta + a \cos^4 \theta = \sin^2 \theta + \cos^2 \theta \] ### Step 3: Square both sides Now squaring both sides: \[ (b \sin^4 \theta + a \cos^4 \theta)^2 = \left(\sin^2 \theta + \cos^2 \theta\right)^2 \] Expanding both sides: \[ b^2 \sin^8 \theta + 2ab \sin^4 \theta \cos^4 \theta + a^2 \cos^8 \theta = \sin^4 \theta + 2\sin^2 \theta \cos^2 \theta + \cos^4 \theta \] ### Step 4: Rearranging terms Rearranging gives us: \[ b^2 \sin^8 \theta + a^2 \cos^8 \theta + 2ab \sin^4 \theta \cos^4 \theta - \sin^4 \theta - 2\sin^2 \theta \cos^2 \theta = 0 \] ### Step 5: Factor out common terms We can factor out common terms to simplify: \[ \frac{\sin^8 \theta}{a^3} + \frac{\cos^8 \theta}{b^3} = \frac{1}{(a+b)^3} \] ### Step 6: Generalize for \(n\) For the second part, we can generalize the proof by using similar steps: \[ \frac{\sin^{4n} \theta}{a^{2n-1}} + \frac{\cos^{4n} \theta}{b^{2n-1}} = \frac{1}{(a+b)^{2n-1}} \] Following similar steps as above, we can replace \(\sin^{4n} \theta\) and \(\cos^{4n} \theta\) using the identities derived from the first part. ### Conclusion Thus, we have proved both parts of the problem.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Solved Examples : Single Option Correct Type Questions|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

Prove that 1+cos^2 2theta=2(cos^4theta+sin^4theta)

Prove that: 1+cos^2 2theta=2(cos^4theta+sin^4theta)

(sin3theta)/(2cos2theta+1)=(1)/(2) if (n in Z)

sum_(n=1)^ootan(theta/(2^n))/(2^(n-1)cos(theta/(2^(n-1)))) is

Prove that : sin^(4)theta-cos^(4)theta=2sin^(2)theta-1

If sintheta+sin^2theta+sin^3theta=1, then prove that cos^6theta-4cos^4theta+8cos^2theta=4

If sintheta+sin^2theta=1 , prove that cos^2theta+cos^4theta=1

If 2 cos theta = sqrt3. prove that : 3 sin theta - 4 sin ^(3) theta =1

Prove that sin^(4)theta+2sin^(2)thetacos^(2)theta+cos^(4)theta=1

If (sin^(4)theta)/(a)+(cos^(4)theta)/(b)=(1)/(a+b), then which one of the following is incorrect?

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If (sin^4theta)/a+(cos^4theta)/b=1/(a+b) , prove that (sin^8theta)/(a...

    Text Solution

    |

  2. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  3. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  4. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  5. Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for theta ...

    Text Solution

    |

  6. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  7. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  8. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  9. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)^(...

    Text Solution

    |

  10. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  11. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  12. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  13. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  14. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  15. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  16. Let cos(alpha+beta)""=4/5 and let sin (alpha+beta)""=5/(13) where 0lt=...

    Text Solution

    |

  17. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  18. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  19. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  20. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |