Home
Class 12
MATHS
Find sum of sin2alpha+sin3alpha+.......+...

Find sum of `sin2alpha+sin3alpha+.......+sinnalpha` where `(n+2)alpha = 2 pi`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum \( S = \sin 2\alpha + \sin 3\alpha + \sin 4\alpha + \ldots + \sin n\alpha \) given that \( (n + 2)\alpha = 2\pi \), we can follow these steps: ### Step 1: Express \(\alpha\) in terms of \(n\) From the equation \( (n + 2)\alpha = 2\pi \), we can solve for \(\alpha\): \[ \alpha = \frac{2\pi}{n + 2} \] ### Step 2: Substitute \(\alpha\) into the sum Now substitute \(\alpha\) back into the sum \( S \): \[ S = \sin\left(2 \cdot \frac{2\pi}{n + 2}\right) + \sin\left(3 \cdot \frac{2\pi}{n + 2}\right) + \sin\left(4 \cdot \frac{2\pi}{n + 2}\right) + \ldots + \sin\left(n \cdot \frac{2\pi}{n + 2}\right) \] This simplifies to: \[ S = \sin\left(\frac{4\pi}{n + 2}\right) + \sin\left(\frac{6\pi}{n + 2}\right) + \sin\left(\frac{8\pi}{n + 2}\right) + \ldots + \sin\left(\frac{2n\pi}{n + 2}\right) \] ### Step 3: Recognize the pattern The terms can be rewritten as: \[ S = \sum_{k=2}^{n} \sin\left(\frac{2k\pi}{n + 2}\right) \] ### Step 4: Use the identity for the sum of sine functions We can use the identity: \[ \sum_{k=0}^{m-1} \sin\left(a + kd\right) = \frac{\sin\left(\frac{md}{2}\right) \sin\left(a + \frac{(m-1)d}{2}\right)}{\sin\left(\frac{d}{2}\right)} \] In our case, \( a = \frac{4\pi}{n + 2} \), \( d = \frac{2\pi}{n + 2} \), and \( m = n - 1 \). ### Step 5: Apply the identity Using the identity: \[ S = \frac{\sin\left(\frac{(n-1)\cdot 2\pi}{2(n + 2)}\right) \sin\left(\frac{4\pi}{n + 2} + \frac{(n-2)\cdot 2\pi}{2(n + 2)}\right)}{\sin\left(\frac{2\pi}{2(n + 2)}\right)} \] ### Step 6: Simplify the expression After simplification, we can see that: \[ S = 0 \] because the sine terms will cancel out due to the periodic nature of the sine function. ### Final Result Thus, the sum \( S = \sin 2\alpha + \sin 3\alpha + \ldots + \sin n\alpha = 0 \). ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Solved Examples : Single Option Correct Type Questions|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate cos alpha cos 2 alpha cos 3 alpha..........cos 999alpha , where alpha=(2pi)/(1999)

Solve: sin3alpha=4sinalpha. Sin(theta+alpha).sin(theta-alpha) where alpha ne n pi, n in I

The value of the expression (sin7alpha+6sin 5 alpha+17sin3alpha+12sin alpha)/(sin6alpha+5sin 4alpha+12 sin 2 alpha) , where alpha=(pi)/(5) is equal to :

If sinalpha, sin^2alpha, 1 , sin^4alpha and sin^6alpha are in A.P., where -pi < alpha < pi, then alpha lies in the interval

find the value of (cos^3alpha+sin^3alpha)/(1-sin(alpha).cos(alpha))

(cos ^(3) alpha - cos 3 alpha )/( cos alpha ) + (sin ^(3)alpha + sin 3 alpha )/( sin alpha ) = 3.

Show that 4 sin alpha.sin (alpha + pi/3) sin (alpha + 2pi/3) = sin 3alpha

Find the sum of the series sin^2alpha+sin^2(alpha+beta)+sin^2(alpha+2beta)…+sin^2(alpha +(n-1) beta)

If a cos^3 alpha +3acosalpha*sin alpha = m and a sin^3alpha +3a cos^3alpha sin^3alpha = n then (m + n)^(2/3) + (m-n)^(2/3)

If cos3theta=cos3alpha, then the value of sintheta can be given by +-sinalpha (b) sin(pi/3+-alpha) sin((2pi)/3+alpha) (d) sin((2pi)/3-alpha)

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Find sum of sin2alpha+sin3alpha+.......+sinnalpha where (n+2)alpha = 2...

    Text Solution

    |

  2. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  3. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  4. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  5. Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for theta ...

    Text Solution

    |

  6. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  7. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  8. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  9. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)^(...

    Text Solution

    |

  10. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  11. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  12. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  13. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  14. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  15. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  16. Let cos(alpha+beta)""=4/5 and let sin (alpha+beta)""=5/(13) where 0lt=...

    Text Solution

    |

  17. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  18. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  19. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  20. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |