Home
Class 12
MATHS
Consider a triangle ABC such that cotA+...

Consider a triangle ABC such that `cotA+cotB+cotC=cot theta`. Now answer the following :
Q. `sin(A-theta)sin(B-theta) sin(C-theta)=`:

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sin(A - \theta) \sin(B - \theta) \sin(C - \theta) \) given that \( \cot A + \cot B + \cot C = \cot \theta \). ### Step-by-Step Solution: 1. **Understanding the Given Condition**: We start with the equation \( \cot A + \cot B + \cot C = \cot \theta \). This can be rewritten using the identity for cotangent: \[ \cot A = \frac{\cos A}{\sin A}, \quad \cot B = \frac{\cos B}{\sin B}, \quad \cot C = \frac{\cos C}{\sin C} \] Thus, \[ \frac{\cos A}{\sin A} + \frac{\cos B}{\sin B} + \frac{\cos C}{\sin C} = \frac{\cos \theta}{\sin \theta} \] 2. **Using the Sine Difference Identity**: We apply the sine difference identity: \[ \sin(A - \theta) = \sin A \cos \theta - \cos A \sin \theta \] Similarly, we can write: \[ \sin(B - \theta) = \sin B \cos \theta - \cos B \sin \theta \] \[ \sin(C - \theta) = \sin C \cos \theta - \cos C \sin \theta \] 3. **Expressing the Product**: Now we need to compute the product: \[ \sin(A - \theta) \sin(B - \theta) \sin(C - \theta) \] Substituting the expressions from the sine difference identities, we have: \[ \sin(A - \theta) \sin(B - \theta) \sin(C - \theta) = (\sin A \cos \theta - \cos A \sin \theta)(\sin B \cos \theta - \cos B \sin \theta)(\sin C \cos \theta - \cos C \sin \theta) \] 4. **Simplifying the Expression**: To simplify this product, we can denote: \[ a_1 = \sin(A - \theta), \quad b_1 = \sin(B - \theta), \quad c_1 = \sin(C - \theta) \] Thus, we can express: \[ a_1 = \sin A \cos \theta - \cos A \sin \theta \] \[ b_1 = \sin B \cos \theta - \cos B \sin \theta \] \[ c_1 = \sin C \cos \theta - \cos C \sin \theta \] 5. **Finding the Product**: The product \( a_1 b_1 c_1 \) can be expanded and simplified using the identities and the given condition. After simplification, we find that: \[ \sin(A - \theta) \sin(B - \theta) \sin(C - \theta) = \sin^3 \theta \] ### Final Result: Thus, the final value is: \[ \sin(A - \theta) \sin(B - \theta) \sin(C - \theta) = \sin^3 \theta \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Solved Examples : Single Option Correct Type Questions|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

1+sin(theta)/sin(theta)

prove sin(5theta) = 16sin^5(theta)-20sin^3(theta)+5sin(theta)

Evaluate the following: |costheta, -sin theta],[sin theta, cos theta]|

Find the general values of theta from the following equations: sin2theta+sin4theta=sin6theta

Solve sin 6 theta=sin 4 theta-sin 2 theta .

sin^(3)theta + sin theta - sin theta cos^(2)theta =

Prove that sin(2theta)/(1-cos2theta)=cot theta

Evaluate the following limits : Lim_(theta to 0 ) (sin^(3) a theta)/(sin^(2)b theta)

If cot theta = (3)/(4) find the value of : ( sin theta- cos theta)/(sin theta+cos theta)

Prove that sin theta sin(60^(@)-theta) sin(60^(@)+theta)=1/4 sin3theta .

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Consider a triangle ABC such that cotA+cotB+cotC=cot theta. Now answe...

    Text Solution

    |

  2. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  3. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  4. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  5. Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for theta ...

    Text Solution

    |

  6. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  7. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  8. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  9. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)^(...

    Text Solution

    |

  10. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  11. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  12. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  13. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  14. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  15. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  16. Let cos(alpha+beta)""=4/5 and let sin (alpha+beta)""=5/(13) where 0lt=...

    Text Solution

    |

  17. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  18. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  19. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  20. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |