Home
Class 12
MATHS
If sin x+siny+sinz=3. Find the value of ...

If `sin x+siny+sinz=3`. Find the value of `cos x+cosy+cosz`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \sin x + \sin y + \sin z = 3 \] ### Step 1: Analyze the Sine Values We know that the sine function has a maximum value of 1. Therefore, for the equation \(\sin x + \sin y + \sin z = 3\) to hold true, each sine term must equal its maximum value: \[ \sin x = 1, \quad \sin y = 1, \quad \sin z = 1 \] ### Step 2: Determine the Angles The sine function equals 1 at specific angles. The primary angle where \(\sin\) equals 1 is: \[ x = \frac{\pi}{2} + 2k\pi, \quad y = \frac{\pi}{2} + 2m\pi, \quad z = \frac{\pi}{2} + 2n\pi \] for integers \(k\), \(m\), and \(n\). ### Step 3: Calculate the Cosine Values Now we need to find the cosine values corresponding to these angles. We know that: \[ \cos\left(\frac{\pi}{2}\right) = 0 \] Thus, we have: \[ \cos x = 0, \quad \cos y = 0, \quad \cos z = 0 \] ### Step 4: Sum the Cosine Values Now, we can sum these cosine values: \[ \cos x + \cos y + \cos z = 0 + 0 + 0 = 0 \] ### Conclusion Therefore, the value of \(\cos x + \cos y + \cos z\) is: \[ \boxed{0} \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|9 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|10 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

(ii)Find the value of cos x-sin x ?.

Find the value of dy/dx if xy=siny+cosy

If sinx+sin^2x+sin^3x=1 then find the value of cos^6x-4cos^4x+8cos^2x

If sinx+sin^2x+sin^3x=1 then find the value of cos^6x-4cos^4x+8cos^2x

If sin x+cos x=a , find the value of sin^6x+cos^6xdot

If sinx+sin^2x=1 , then find the value of cos^(12)x +3cos^(10)x + 3 cos^8x + cos^6x-2

If sinx+sin^2x=1 , then find the value of cos^(12)x +3cos^(10)x + 3 cos^8x + cos^6x-1

If sin ^(-1) x =(pi)/(4) , find the value of cos^(-1) x .

If sinx+cosy=1" and "x=30^(@) , find the value of y.

If sinx+cosy=1" and "x=30^(@) , find the value of y.