Home
Class 12
MATHS
If tanx=-(4)/(3), (3pi)/(2) lt x lt 2pi,...

If `tanx=-(4)/(3), (3pi)/(2) lt x lt 2pi`, find the value of `9sec^(2)x-4 cot x`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( 9\sec^2 x - 4\cot x \) given that \( \tan x = -\frac{4}{3} \) and \( \frac{3\pi}{2} < x < 2\pi \). ### Step 1: Identify the quadrant Since \( \tan x = -\frac{4}{3} \) and \( x \) is in the fourth quadrant (between \( \frac{3\pi}{2} \) and \( 2\pi \)), we know that \( \tan x \) is negative in this quadrant. ### Step 2: Find \( \sec^2 x \) Using the identity: \[ \sec^2 x = 1 + \tan^2 x \] First, we calculate \( \tan^2 x \): \[ \tan^2 x = \left(-\frac{4}{3}\right)^2 = \frac{16}{9} \] Now substituting this value into the identity: \[ \sec^2 x = 1 + \frac{16}{9} = \frac{9}{9} + \frac{16}{9} = \frac{25}{9} \] ### Step 3: Find \( \cot x \) We know that: \[ \cot x = \frac{1}{\tan x} \] Thus: \[ \cot x = \frac{1}{-\frac{4}{3}} = -\frac{3}{4} \] ### Step 4: Substitute values into the expression Now we substitute \( \sec^2 x \) and \( \cot x \) into the expression \( 9\sec^2 x - 4\cot x \): \[ 9\sec^2 x = 9 \times \frac{25}{9} = 25 \] \[ -4\cot x = -4 \times \left(-\frac{3}{4}\right) = 3 \] Now we combine these results: \[ 9\sec^2 x - 4\cot x = 25 + 3 = 28 \] ### Final Answer Thus, the value of \( 9\sec^2 x - 4\cot x \) is \( \boxed{28} \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|10 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|8 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

If tan x = -(4)/(3), (pi)/(2) lt x lt pi , then find the value of sin(x/2), cos(x/2) and tan(x/2) .

If tan theta = - 4/3 , (3pi)/2 lt theta lt 2pi , find the value of 9sec^2 theta-4 cot theta.

For 2 lt x lt 4 , find the values of |x|.

if cos x= (-sqrt(15))/(4) " and " (pi)/(2) lt x lt pi find the value of sin x .

If 0 lt x lt pi /2 then

If sin x = 1/4 , pi/2 lt x lt pi , find the values of cos\ x/2 and tan\ x/2 .

If sec theta =sqrt(2) and (3pi)/(2)lt theta lt 2pi , find the value of (1+tan theta+"cosec"theta)/(1+cot theta-"cosec"theta) .

If cosA=-sqrt(3)/2, sinB=-5/13 , where pi/2 lt A lt pi, (3pi)/(2) lt B lt 2pi , find the value of tan(A-B) .

If sec theta = sqrt(2) and (3pi)/2 lt theta lt 2pi , find the value of (1+tan theta + cosec theta)/(1-cot theta - cosec theta) .

If tanx=3/4, piltxlt(3pi)/2, find the value of sin(x/2) , cos(x/2), tan(x/2)