Home
Class 12
MATHS
if cos x= (-sqrt(15))/(4) " and " (pi...

if cos ` x= (-sqrt(15))/(4) " and " (pi)/(2) lt x lt pi` find the value of sin x .

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sin x \) given that \( \cos x = -\frac{\sqrt{15}}{4} \) and \( \frac{\pi}{2} < x < \pi \), we can follow these steps: ### Step 1: Use the Pythagorean Identity We know from the Pythagorean identity that: \[ \sin^2 x + \cos^2 x = 1 \] We can rearrange this to find \( \sin^2 x \): \[ \sin^2 x = 1 - \cos^2 x \] ### Step 2: Substitute the value of \( \cos x \) Substituting \( \cos x = -\frac{\sqrt{15}}{4} \) into the equation: \[ \sin^2 x = 1 - \left(-\frac{\sqrt{15}}{4}\right)^2 \] ### Step 3: Calculate \( \cos^2 x \) Calculating \( \left(-\frac{\sqrt{15}}{4}\right)^2 \): \[ \cos^2 x = \left(-\frac{\sqrt{15}}{4}\right)^2 = \frac{15}{16} \] ### Step 4: Substitute \( \cos^2 x \) back into the equation Now substituting back into the equation for \( \sin^2 x \): \[ \sin^2 x = 1 - \frac{15}{16} \] ### Step 5: Simplify the equation Calculating \( 1 - \frac{15}{16} \): \[ \sin^2 x = \frac{16}{16} - \frac{15}{16} = \frac{1}{16} \] ### Step 6: Find \( \sin x \) Taking the square root of both sides: \[ \sin x = \pm \frac{1}{4} \] ### Step 7: Determine the correct sign Since \( x \) is in the second quadrant (where \( \frac{\pi}{2} < x < \pi \)), the sine function is positive in this quadrant. Therefore: \[ \sin x = \frac{1}{4} \] ### Final Answer Thus, the value of \( \sin x \) is: \[ \sin x = \frac{1}{4} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|10 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|8 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

If sin x = 1/4 , pi/2 lt x lt pi , find the values of cos\ x/2 and tan\ x/2 .

If tanx=-(4)/(3), (3pi)/(2) lt x lt 2pi , find the value of 9sec^(2)x-4 cot x .

Knowledge Check

  • If 0 lt x lt (pi)/(2) and cos x = 0.34 , what is the value of sin ((x)/(2)) ?

    A
    `0.574`
    B
    `0.733`
    C
    `0.819`
    D
    `0.917`
  • Similar Questions

    Explore conceptually related problems

    If tan x = -(4)/(3), (pi)/(2) lt x lt pi , then find the value of sin(x/2), cos(x/2) and tan(x/2) .

    If 0 lt x lt 2 pi and |cos x| le sin x , then

    If cos x + sin x = a , (- (pi)/(2) lt x lt - (pi)/(4)) , then cos 2 x is equal to

    If sin A=3/5 and cos B = 9/41, 0 lt A lt pi/2 and 0 lt B lt pi/2 . Find the values of that : sin (A+B)

    If cosA=-sqrt(3)/2, sinB=-5/13 , where pi/2 lt A lt pi, (3pi)/(2) lt B lt 2pi , find the value of tan(A-B) .

    If cosA=-3/5 and pi/2 lt A lt pi , find the values of the following: i) sin2A , ii) cos2A , iii) tan2A

    Express sin^(-1)((sin x+ cos x)/(sqrt2)) , where -(pi)/(4) lt x lt (pi)/(4) , in the simplest form.