Home
Class 12
MATHS
If pi lt theta lt (3pi)/(2), then find t...

If `pi lt theta lt (3pi)/(2)`, then find the value of `sqrt((1-cos2theta)/(1+cos 2 theta))`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \[ y = \sqrt{\frac{1 - \cos 2\theta}{1 + \cos 2\theta}} \] given that \(\pi < \theta < \frac{3\pi}{2}\). ### Step 1: Use the double angle identity for cosine We know that \[ \cos 2\theta = 2\cos^2 \theta - 1 \] and \[ \cos 2\theta = 1 - 2\sin^2 \theta. \] We will use both forms in our calculations. ### Step 2: Substitute the identity into the expression We can rewrite \(y\) using the identity for \(\cos 2\theta\): \[ y = \sqrt{\frac{1 - (1 - 2\sin^2 \theta)}{1 + (1 - 2\sin^2 \theta)}} \] This simplifies to: \[ y = \sqrt{\frac{2\sin^2 \theta}{2 - 2\sin^2 \theta}}. \] ### Step 3: Simplify the expression Now, we can simplify the fraction: \[ y = \sqrt{\frac{2\sin^2 \theta}{2(1 - \sin^2 \theta)}} = \sqrt{\frac{\sin^2 \theta}{1 - \sin^2 \theta}}. \] ### Step 4: Use the identity \(1 - \sin^2 \theta = \cos^2 \theta\) We know that \(1 - \sin^2 \theta = \cos^2 \theta\), so we can substitute this into our expression: \[ y = \sqrt{\frac{\sin^2 \theta}{\cos^2 \theta}}. \] ### Step 5: Simplify further This simplifies to: \[ y = \sqrt{\tan^2 \theta} = |\tan \theta|. \] ### Step 6: Determine the sign of \(\tan \theta\) Since we are given that \(\pi < \theta < \frac{3\pi}{2}\), we know that in this interval, \(\tan \theta\) is positive. Therefore, we can write: \[ y = \tan \theta. \] ### Final Answer Thus, the value of \[ \sqrt{\frac{1 - \cos 2\theta}{1 + \cos 2\theta}} = \tan \theta. \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 9|10 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 10|9 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|8 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

If pi

If pi/2 < theta < (3pi)/2 then write the value of sqrt((1+cos2theta)/2)

If pi/2

If cos theta= -1/2 and pi < theta < (3pi)/2 then find the value of 4tan^2 theta- 3cosec^2 theta

If 0 lt theta lt pi//2 then .find the least value of tan theta + cot theta

If cos theta = - 3/5 and pi lt theta lt (3pi)/2 , find the value of (sec theta - tan theta)/(cosec theta + cot theta)

If sec theta = sqrt(2) and (3pi)/2 lt theta lt 2pi , find the value of (1+tan theta + cosec theta)/(1-cot theta - cosec theta) .

If -pi lt theta lt -(pi)/(2)," then " |sqrt((1-sin theta)/(1+sintheta))+sqrt((1+sin theta)/(1-sin theta))| is equal to :

If sec theta =sqrt(2) and (3pi)/(2)lt theta lt 2pi , find the value of (1+tan theta+"cosec"theta)/(1+cot theta-"cosec"theta) .

If tan theta = - 4/3 , (3pi)/2 lt theta lt 2pi , find the value of 9sec^2 theta-4 cot theta.