Home
Class 12
MATHS
if tanx=-4/3,x lies in Il quadrant, the...

if `tanx=-4/3,x` lies in `Il` quadrant, then find the value of `sin(x/2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding \( \sin\left(\frac{x}{2}\right) \) given that \( \tan x = -\frac{4}{3} \) and \( x \) lies in the second quadrant, we can follow these steps: ### Step 1: Understand the Quadrant and Values Since \( x \) is in the second quadrant, we know: - \( \sin x \) is positive. - \( \cos x \) is negative. - \( \tan x \) is negative (which is consistent with the given information). ### Step 2: Set Up the Right Triangle From the given \( \tan x = -\frac{4}{3} \), we can represent this as: - Opposite side = 4 - Adjacent side = -3 (negative because cosine is negative in the second quadrant) Using the Pythagorean theorem, we can find the hypotenuse: \[ \text{Hypotenuse} = \sqrt{(4)^2 + (-3)^2} = \sqrt{16 + 9} = \sqrt{25} = 5 \] ### Step 3: Find \( \sin x \) and \( \cos x \) Now we can find \( \sin x \) and \( \cos x \): \[ \sin x = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{4}{5} \] \[ \cos x = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{-3}{5} \] ### Step 4: Use the Half-Angle Identity To find \( \sin\left(\frac{x}{2}\right) \), we use the half-angle identity: \[ \sin\left(\frac{x}{2}\right) = \sqrt{\frac{1 - \cos x}{2}} \] ### Step 5: Substitute \( \cos x \) Substituting \( \cos x = -\frac{3}{5} \) into the half-angle identity: \[ \sin\left(\frac{x}{2}\right) = \sqrt{\frac{1 - \left(-\frac{3}{5}\right)}{2}} = \sqrt{\frac{1 + \frac{3}{5}}{2}} = \sqrt{\frac{\frac{5}{5} + \frac{3}{5}}{2}} = \sqrt{\frac{\frac{8}{5}}{2}} = \sqrt{\frac{8}{10}} = \sqrt{\frac{4}{5}} = \frac{2}{\sqrt{5}} \] ### Step 6: Final Answer Thus, the value of \( \sin\left(\frac{x}{2}\right) \) is: \[ \sin\left(\frac{x}{2}\right) = \frac{2}{\sqrt{5}} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 9|10 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 10|9 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|8 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

If cos x = - (1)/(3) , x lies in III quardrnat, then find the values of sin(x/2), cos (x/2) and tan (x/2) .

If sinA=-4/5 and A lies in 3rd quadrant, find the values of (i) sin2A ii) cos2A .

If cos x=\ -3/5a n d\ x lies in the IIIrd quadrant, find the values of cos(x/2),sin(x/2)a n d\ sin2xdot

If sinx=(sqrt(5))/3a n d\ x lies in IInd quadrant, find the values of cos(x/2),sin(x/2)a n d tan(x/2)dot

If cos A=-12/13 and cotB=24/7 where A lies in second quadrant and B lies in third quadrant then find the values of (i) sin (A+B) (ii) cos(A+B) (iii) tan(A+B)

If cos x=-3/5a n d\ x lies in IInd quadrant, find the values of sin2x\ a n dsin(x/2)dot

If sinalpha=-(3)/(5) and alpha lies in the third quadrant then find the value of cos.(alpha)/(2)

If secA=-2 and A lies in third quadrant, find the value of (4 cot^(2)A-3sin^(2)A) .

If cos x=- (1)/(3) and x lies in Quadrant III find the values of (i) " sin " .(x)/(2) , (ii) " cos " .(x)/(2) , (iii) " tan ".(x)/(2)

If "sin"theta=-4/(5) and theta lies in third quadrant, then the value of "cos"theta/(2) is