Home
Class 12
MATHS
If tan3A=(3 tan A+k tan^(3)A)/(1-3 tan^(...

If `tan3A=(3 tan A+k tan^(3)A)/(1-3 tan^(2)A)`, then k is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan 3A = \frac{3 \tan A + k \tan^3 A}{1 - 3 \tan^2 A} \), we need to find the value of \( k \). ### Step-by-Step Solution: 1. **Use the Angle Addition Formula:** We know that \( \tan 3A \) can be expressed using the formula for \( \tan(A + B) \): \[ \tan 3A = \tan(A + 2A) \] Using the formula \( \tan(a + b) = \frac{\tan a + \tan b}{1 - \tan a \tan b} \), we can set \( a = A \) and \( b = 2A \). 2. **Calculate \( \tan 2A \):** We can express \( \tan 2A \) using the double angle formula: \[ \tan 2A = \frac{2 \tan A}{1 - \tan^2 A} \] 3. **Substituting \( \tan 2A \) into \( \tan 3A \):** Now substituting \( \tan 2A \) into the formula for \( \tan 3A \): \[ \tan 3A = \frac{\tan A + \tan 2A}{1 - \tan A \tan 2A} \] Substituting \( \tan 2A \): \[ \tan 3A = \frac{\tan A + \frac{2 \tan A}{1 - \tan^2 A}}{1 - \tan A \cdot \frac{2 \tan A}{1 - \tan^2 A}} \] 4. **Simplifying the Numerator:** The numerator becomes: \[ \tan A + \frac{2 \tan A}{1 - \tan^2 A} = \frac{\tan A(1 - \tan^2 A) + 2 \tan A}{1 - \tan^2 A} = \frac{\tan A(1 - \tan^2 A + 2)}{1 - \tan^2 A} = \frac{\tan A(3 - \tan^2 A)}{1 - \tan^2 A} \] 5. **Simplifying the Denominator:** The denominator becomes: \[ 1 - \tan A \cdot \frac{2 \tan A}{1 - \tan^2 A} = 1 - \frac{2 \tan^2 A}{1 - \tan^2 A} = \frac{(1 - \tan^2 A) - 2 \tan^2 A}{1 - \tan^2 A} = \frac{1 - 3 \tan^2 A}{1 - \tan^2 A} \] 6. **Final Expression for \( \tan 3A \):** Putting it all together: \[ \tan 3A = \frac{\frac{\tan A(3 - \tan^2 A)}{1 - \tan^2 A}}{\frac{1 - 3 \tan^2 A}{1 - \tan^2 A}} = \frac{\tan A(3 - \tan^2 A)}{1 - 3 \tan^2 A} \] 7. **Comparing with Given Expression:** Now we compare: \[ \tan 3A = \frac{3 \tan A + k \tan^3 A}{1 - 3 \tan^2 A} \] From the expression we derived: \[ \tan 3A = \frac{3 \tan A - \tan^3 A}{1 - 3 \tan^2 A} \] By comparing coefficients, we see that \( k = -1 \). ### Conclusion: Thus, the value of \( k \) is: \[ \boxed{-1} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 9|10 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 10|9 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|8 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

tan 3A-tan 2A-tan A= is equal to

Let A, B and C are the angles of a plain triangle and tan(A/2)=1/3,tan(B/2)=2/3 .then tan(C/2) is equal to

If tan 3 theta + tan theta =2 tan 2 theta , then theta is equal to (n in Z)

If (tan3A)/(tanA)=k, then (sin3A)/(sinA)=

cos(tan^(-1)3/4)+cos(tan^(-1)x) is equal to

(2tan3 0^(@))/(1-tan^2 3 0^(@))

(2tan3 0^(@))/(1-tan^2 3 0^(@))

inttanx tan 2x tan 3x dx is equal to

tan 3A - tan 2 A - tan A = tan 3 A tan 2 A tan A.

tan^(-1)(1/2)+tan^(-1)(1/3) is equal to