Home
Class 12
MATHS
If alpha+beta+gamma=2pi, then show that ...

If `alpha+beta+gamma=2pi`, then show that `tan.alpha/2 + tan.beta/2 + tan.gamma/2 = tan.alpha/2 tan.beta/2 tan.gamma/2`.

Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 11|10 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|52 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 9|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

If alpha+beta+gamma=2pi, then (a) tan(alpha/2)+tan(beta/2)+tan(gamma/2)=tan(alpha/2)tan(beta/2)tan(gamma/2) (b) tan(alpha/2)tan(beta/2)+tan(beta/2)tan(gamma/2)+tan(gamma/2)tan(alpha/2)=1 (c) tan(alpha/2)+tan(beta/2)+tan(gamma/2)=-tan(alpha/2)tan(beta/2)tan(gamma/2) (d)none of these

If alpha+beta=pi/2a n dbeta+gamma=alpha, then tanalpha equals 2(tanbeta+tangamma) (b) tanbeta+tangamma tanbeta+2tangamma (d) 2tanbeta+tangamma

If alpha+beta=pi/2a n dbeta+gamma=alpha, then tanalpha equals

If alpha + beta + gamma = pi , show that : tan (beta+gamma-alpha) + tan (gamma+alpha-beta) + tan (alpha+beta-gamma) = tan (beta+gamma-alpha) tan (gamma+alpha-beta) tan (alpha+beta-gamma)

(1+tan alpha tan beta)^2 + (tan alpha - tan beta)^2 =

Let alpha,beta,gamma>0a n dalpha+beta+gamma=pi/2dot Then prove that sqrt(tanalphatanbeta) + sqrt(t a nbeta"tan"gamma)+sqrt(tanalphatangamma)lt=sqrt(3)

If a right angle be divided into three parts alpha, beta and gamma , prove that cot alpha = (tan beta + tan gamma)/(1-tan beta tan gamma) .

If alpha + beta = 90^@ and beta + gamma = alpha then tanalpha-tanbeta=?

Determine the values of alpha, beta, gamma when [{:(0,2sinbeta,tan gamma),(cos alpha, sin beta,-tan gamma),(cos alpha, -sin beta, tan gamma):}] is orthogonal.

If cos theta=cos alpha cos beta then tan((theta+alpha)/2) tan((theta-alpha)/2)= (i) tan^2(alpha/2) (ii) tan^2(beta/2) (iii) tan^2(theta/2) (iv) cot^2(beta/2)