Home
Class 12
MATHS
Find the minimum value of sec^2 theta + ...

Find the minimum value of `sec^2 theta + cosec^2 theta - 4.`

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the expression \( \sec^2 \theta + \csc^2 \theta - 4 \), we can follow these steps: ### Step 1: Define the function Let \( f(\theta) = \sec^2 \theta + \csc^2 \theta - 4 \). ### Step 2: Differentiate the function To find the critical points, we need to differentiate \( f(\theta) \): \[ f'(\theta) = \frac{d}{d\theta}(\sec^2 \theta) + \frac{d}{d\theta}(\csc^2 \theta) \] Using the derivatives: - The derivative of \( \sec^2 \theta \) is \( 2 \sec^2 \theta \tan \theta \). - The derivative of \( \csc^2 \theta \) is \( -2 \csc^2 \theta \cot \theta \). Thus, we have: \[ f'(\theta) = 2 \sec^2 \theta \tan \theta - 2 \csc^2 \theta \cot \theta \] ### Step 3: Set the derivative to zero To find the critical points, we set the derivative equal to zero: \[ 2 \sec^2 \theta \tan \theta - 2 \csc^2 \theta \cot \theta = 0 \] Dividing through by 2 gives: \[ \sec^2 \theta \tan \theta = \csc^2 \theta \cot \theta \] ### Step 4: Use trigonometric identities Recall that: - \( \sec^2 \theta = \frac{1}{\cos^2 \theta} \) - \( \csc^2 \theta = \frac{1}{\sin^2 \theta} \) - \( \tan \theta = \frac{\sin \theta}{\cos \theta} \) - \( \cot \theta = \frac{\cos \theta}{\sin \theta} \) Substituting these into the equation gives: \[ \frac{1}{\cos^2 \theta} \cdot \frac{\sin \theta}{\cos \theta} = \frac{1}{\sin^2 \theta} \cdot \frac{\cos \theta}{\sin \theta} \] This simplifies to: \[ \frac{\sin \theta}{\cos^3 \theta} = \frac{\cos \theta}{\sin^3 \theta} \] ### Step 5: Cross-multiply and simplify Cross-multiplying gives: \[ \sin^4 \theta = \cos^4 \theta \] This implies: \[ \tan^4 \theta = 1 \] Taking the fourth root gives: \[ \tan \theta = 1 \quad \text{or} \quad \tan \theta = -1 \] Thus, \( \theta = \frac{\pi}{4} + n\pi \) for integers \( n \). ### Step 6: Evaluate the function at critical points We will evaluate \( f(\theta) \) at \( \theta = \frac{\pi}{4} \): \[ \sec^2\left(\frac{\pi}{4}\right) = 2, \quad \csc^2\left(\frac{\pi}{4}\right) = 2 \] Thus: \[ f\left(\frac{\pi}{4}\right) = 2 + 2 - 4 = 0 \] ### Conclusion The minimum value of \( \sec^2 \theta + \csc^2 \theta - 4 \) is \( 0 \).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|52 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|20 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 10|9 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

Minimum value of sec ^(2) theta + cos ^(2) theta is

Find the minimum value of 9tan^2theta+4cot^2theta

If 0 lt theta lt pi, then minimum value of 3sintheta+cosec^3 theta is

Find the general value of theta in sec theta - cosec theta = (4)/(3)

The minimum value of 64 sec theta+27 "cosec" theta where theta in (0,(pi)/(2)) is _________

Given : 4 sintheta = 3 cos theta , find the value of: cot^2 theta - "cosec"^2 theta

If 0ltthetaltpi , then the minimum value of sin^(5)theta+"cosec"^(5)theta, is

If cos theta = - 3/5 and pi lt theta lt (3pi)/2 , find the value of (sec theta - tan theta)/(cosec theta + cot theta)

Find the general value of theta sqrt3 cosec theta = 2

1/sec2(theta) + 1/cosec2(theta) =