Home
Class 12
MATHS
The ratio of the greatest value of 2-cos...

The ratio of the greatest value of `2-cos x+s in^2x` to its least value is `7/4` (2) `9/4` (3) `(13)/4` (4) `5/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the ratio of the greatest value to the least value of the function \( f(x) = 2 - \cos x + \sin^2 x \). ### Step 1: Define the function Let: \[ f(x) = 2 - \cos x + \sin^2 x \] ### Step 2: Differentiate the function To find the critical points, we differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx}(2 - \cos x + \sin^2 x) \] Using the derivatives of \( \cos x \) and \( \sin^2 x \): \[ f'(x) = \sin x + 2 \sin x \cos x = \sin x (1 + 2 \cos x) \] ### Step 3: Set the derivative to zero To find the critical points, set \( f'(x) = 0 \): \[ \sin x (1 + 2 \cos x) = 0 \] This gives us two cases: 1. \( \sin x = 0 \) 2. \( 1 + 2 \cos x = 0 \) ### Step 4: Solve for critical points **Case 1:** \( \sin x = 0 \) This occurs at: \[ x = n\pi \quad (n \in \mathbb{Z}) \] The simplest values are \( x = 0 \). **Case 2:** \( 1 + 2 \cos x = 0 \) This gives: \[ \cos x = -\frac{1}{2} \] This occurs at: \[ x = \frac{2\pi}{3} + 2n\pi \quad \text{and} \quad x = \frac{4\pi}{3} + 2n\pi \] The simplest value is \( x = \frac{2\pi}{3} \). ### Step 5: Determine the nature of critical points We need to check the second derivative to determine whether these points are maxima or minima. ### Step 6: Find the second derivative Differentiate \( f'(x) \): \[ f''(x) = \cos x + 2(\cos^2 x - \sin^2 x) = \cos x + 2\cos 2x \] ### Step 7: Evaluate the second derivative at critical points 1. For \( x = 0 \): \[ f''(0) = \cos(0) + 2\cos(0) = 1 + 2 = 3 \quad (\text{local minimum}) \] 2. For \( x = \frac{2\pi}{3} \): \[ f''\left(\frac{2\pi}{3}\right) = \cos\left(\frac{2\pi}{3}\right) + 2\cos\left(\frac{4\pi}{3}\right) = -\frac{1}{2} + 2\left(-\frac{1}{2}\right) = -\frac{1}{2} - 1 = -\frac{3}{2} \quad (\text{local maximum}) \] ### Step 8: Calculate the greatest and least values 1. **Greatest value at \( x = \frac{2\pi}{3} \)**: \[ f\left(\frac{2\pi}{3}\right) = 2 - \cos\left(\frac{2\pi}{3}\right) + \sin^2\left(\frac{2\pi}{3}\right) \] \[ = 2 - \left(-\frac{1}{2}\right) + \left(\frac{\sqrt{3}}{2}\right)^2 = 2 + \frac{1}{2} + \frac{3}{4} = \frac{4}{2} + \frac{1}{2} + \frac{3}{4} = \frac{8}{4} + \frac{1}{2} = \frac{11}{4} + \frac{3}{4} = \frac{13}{4} \] 2. **Least value at \( x = 0 \)**: \[ f(0) = 2 - \cos(0) + \sin^2(0) = 2 - 1 + 0 = 1 \] ### Step 9: Calculate the ratio Now we find the ratio of the greatest value to the least value: \[ \text{Ratio} = \frac{\text{Greatest value}}{\text{Least value}} = \frac{\frac{13}{4}}{1} = \frac{13}{4} \] ### Final Answer The ratio of the greatest value to the least value is: \[ \frac{13}{4} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|52 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|20 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 10|9 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

The greatest value of (4)/(4x^(2)+4x+9) is

What is the ratio of the greatest and least focal distances ofa point on the ellipse 4x^(2)+9y^(2)=36?

Find the greatest value of x^3y^4 if 2x + 3y = 7 and x>=0,y>=0 .

Find the least value of the expression 3sin^(2)x+4 cos^(2)x .

The greatest value of sin^4theta+cos^4thetai s 1/2 (b) 1 (c) 2 (d) 3

lim_(x->0) (1-cos x cos 2x cos 3x)/ (sin^2 2x) is equal to a) 3/4 b) 7/4 c) 7/2 d) -3/4

What is the value of (2x^2+4x+8) -(2x^2-4x+7) ?

Prove that the greatest value of x y is c^3/sqrt(2a b) , if a^2x^4+b^2y^4=c^6dot

If 1+2x+3x^2+4x^3+oogeq4 , then a) least value of x is 1//2 ; b) greatest value of x is 4/3; c) least value of x is 2/3 ; d) greatest value of x does not exists

If the greatest valueof |z| such that |z-3-4i|lea is equal to the least value of x^4+x+ 5/x in (0,oo) then a= (A) 1 (B) 4 (C) 3 (D) 2