Home
Class 12
MATHS
The value of the expression sum(theta =0...

The value of the expression `sum_(theta =0)^8 1/(1 + tan^3 (10theta)^@)` equals

A

5

B

`21/4`

C

`14/3`

D

`9/2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the expression \[ \sum_{\theta=0}^{8} \frac{1}{1 + \tan^3(10\theta)} \] we will follow these steps: ### Step 1: Rewrite the Expression We start with the expression: \[ S = \sum_{\theta=0}^{8} \frac{1}{1 + \tan^3(10\theta)} \] ### Step 2: Identify Symmetry Notice that \( \tan(10\theta) \) has a periodicity of \( 180^\circ \) or \( \pi \) radians. Therefore, we can analyze the terms in pairs. Specifically, we can pair \( \tan(10\theta) \) with \( \tan(10(8-\theta)) \). ### Step 3: Pairing Terms For each \( \theta \), we have: - \( \tan(10\theta) \) for \( \theta = 0, 1, 2, \ldots, 8 \) - The corresponding pair \( \tan(10(8-\theta)) \) This gives us: \[ \tan(10(8-\theta)) = \tan(80^\circ - 10\theta) \] Using the identity \( \tan(90^\circ - x) = \cot(x) \), we can express this as: \[ \tan(80^\circ - 10\theta) = \cot(10\theta) \] ### Step 4: Use the Cotangent Identity Using the cotangent identity, we can rewrite: \[ 1 + \tan^3(10(8-\theta)) = 1 + \cot^3(10\theta) = 1 + \frac{1}{\tan^3(10\theta)} \] ### Step 5: Combine the Terms Now we can combine the terms: \[ \frac{1}{1 + \tan^3(10\theta)} + \frac{1}{1 + \cot^3(10\theta)} = \frac{1}{1 + \tan^3(10\theta)} + \frac{\tan^3(10\theta)}{1 + \tan^3(10\theta)} = 1 \] This means that each pair \( S = t_\theta + t_{8-\theta} = 1 \). ### Step 6: Count the Pairs We have the following pairs: - \( t_0 + t_8 \) - \( t_1 + t_7 \) - \( t_2 + t_6 \) - \( t_3 + t_5 \) - \( t_4 \) (which is unpaired) Thus, we have 4 pairs contributing 1 each, plus \( t_4 \). ### Step 7: Evaluate \( t_4 \) For \( \theta = 4 \): \[ t_4 = \frac{1}{1 + \tan^3(40^\circ)} \] However, we can see that \( t_4 \) will also contribute to the overall sum. ### Step 8: Final Calculation Since we have 4 pairs contributing 1 each, we have: \[ S = 4 + t_4 \] Given the symmetry and periodicity, we can conclude that: \[ S = 5 \] ### Conclusion Thus, the value of the expression is: \[ \boxed{5} \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|20 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|11 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 11|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

The value of the expression sin^6 theta + cos^6 theta + 3 sin^2 theta. cos^2 theta equals

The value of the expression cosec(75^(@)+theta) - sec(15^@-theta)-tan(55^(@)+theta) + cot(35^(@)-theta) is

If the maximum value of the expression 1/(5sec^2theta-tan^2theta+4cosec^2theta) is equal to p/q (where p and q are coprime), then the value of (p+q) is

The maximum value of the expression 1/(sin^2 theta + 3 sin theta cos theta + 5cos^2 theta) is

The maximum value of the expression 1/(sin^2 theta + 3 sin theta cos theta + 5cos^2 theta) is

The general value of theta satisfying tantheta tan(120^@-theta) tan(120^@+theta)=1/sqrt3 is

The value (s) of theta satisfying the equation theta=tan^(- 1)(2tan^2theta)-1/2(sin^(- 1)((3sin2theta)/(5+4cos2theta))) is

The range of the function f (theta) =(sin theta)/( theta ) + (theta)/(tan theta) , theta in (0, (pi)/(2)) is equal to :

Let f (theta)=(1)/(1+(tan theta)^(2021)) , then the value of sum_(theta=1^(@))^(89^(@))f(theta) is equal to

The value of int((1-cos theta)^((3)/(10)))/((1+cos theta)^((13)/(10))) d theta is equal to (where, c is the constant of integration)

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Single Option Correct Type Questions)
  1. If a^2+2a+cosec^2(pi/2(a+x))=0, then, find the values of a and x.

    Text Solution

    |

  2. The minimum value of the function f(x)=(3 sin x - 4 cos x - 10)(3 si...

    Text Solution

    |

  3. The value of the expression sum(theta =0)^8 1/(1 + tan^3 (10theta)^@) ...

    Text Solution

    |

  4. the value of sqrt(1-sin^2 11 0^(@))*sec11 0^(@)

    Text Solution

    |

  5. If tan alpha ,tan beta are th roots of the eqution x^2+px+q=0 (p !=...

    Text Solution

    |

  6. sin(pi/2^2009)cos(pi/2^2009)cos(pi/2^2008).....cos(pi/2^2) is

    Text Solution

    |

  7. If tanB= (nsinA cosA)/(1-ncos^2A)then tan(A +B) equals

    Text Solution

    |

  8. If pi=(tan(3^(n+1)theta)-tan theta) and Q=sum(r=0)^(n) (sin(3^(r )thet...

    Text Solution

    |

  9. Find the value of (cos^(4)1^(@)+cos^(4)2^(@)+cos^(4)3^(@)+......+cos^(...

    Text Solution

    |

  10. Suppose that 'a' is a non-zero real number for which sin x+sin y=a and...

    Text Solution

    |

  11. Let P(x)=sqrt(( cosx +cos2x+cos3x)^2+ (sin x + sin 2x+sin3x)^2) then P...

    Text Solution

    |

  12. If the maximum value of the expression 1/(5sec^2theta-tan^2theta+4cose...

    Text Solution

    |

  13. Let fn(a)=(sinalpha+sin3alpha+sin5alpha+...+sin(2n-1)alpha)/(cosalpha+...

    Text Solution

    |

  14. The minimum value of |sinx+cosx+(cosx+sinx)/(cos^(4)x-sin^(4)x)| is

    Text Solution

    |

  15. If a = cos (2012 pi), b = sec (2013 pi) and c = tan (2014 pi) then

    Text Solution

    |

  16. In a Delta ABC, the minimum value of sec^(2). (A)/(2)+sec^(2). (B)/...

    Text Solution

    |

  17. The number of ordered pairs (x, y) of real number satisfying 4x^2 - 4...

    Text Solution

    |

  18. In a DeltaABC,3 sin A+4 cos B=6 and 3 cos A+4 sinB=1, then angleC can ...

    Text Solution

    |

  19. An equilateral triangle has side length 8. The area of the region cont...

    Text Solution

    |

  20. If a cos^3 alpha +3acosalpha*sin alpha = m and a sin^3alpha +3a cos^3a...

    Text Solution

    |