Home
Class 12
MATHS
If tan alpha ,tan beta are th roots of...

If `tan alpha ,tan beta ` are th roots of the eqution `x^2+px+q=0 (p != 0)` Then `sin^2(alpha+beta)+p sin(alpha+beta)cos(alpha+beta)+qcos^2(alpha+beta)=`

A

independent of p but dependent on q

B

independent of q but dependent on p

C

independent of both p and q

D

dependent on both p and q

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression: \[ \sin^2(\alpha + \beta) + p \sin(\alpha + \beta) \cos(\alpha + \beta) + q \cos^2(\alpha + \beta) \] given that \(\tan \alpha\) and \(\tan \beta\) are the roots of the equation \(x^2 + px + q = 0\). ### Step 1: Identify the roots and their relationships From the quadratic equation \(x^2 + px + q = 0\), we know that: - The sum of the roots (i.e., \(\tan \alpha + \tan \beta\)) is given by: \[ \tan \alpha + \tan \beta = -p \] - The product of the roots (i.e., \(\tan \alpha \tan \beta\)) is given by: \[ \tan \alpha \tan \beta = q \] ### Step 2: Use the tangent addition formula Using the tangent addition formula, we have: \[ \tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} \] Substituting the values from Step 1: \[ \tan(\alpha + \beta) = \frac{-p}{1 - q} \] ### Step 3: Express \(\sin(\alpha + \beta)\) and \(\cos(\alpha + \beta)\) Using the identity: \[ \sin^2(\theta) + \cos^2(\theta) = 1 \] we can express \(\sin(\alpha + \beta)\) and \(\cos(\alpha + \beta)\) in terms of \(\tan(\alpha + \beta)\): \[ \sin(\alpha + \beta) = \frac{\tan(\alpha + \beta)}{\sqrt{1 + \tan^2(\alpha + \beta)}} = \frac{-p}{\sqrt{(1 - q)^2 + p^2}} \] \[ \cos(\alpha + \beta) = \frac{1}{\sqrt{1 + \tan^2(\alpha + \beta)}} = \frac{1 - q}{\sqrt{(1 - q)^2 + p^2}} \] ### Step 4: Substitute into the expression Now substituting \(\sin(\alpha + \beta)\) and \(\cos(\alpha + \beta)\) into the original expression: \[ \sin^2(\alpha + \beta) = \left(\frac{-p}{\sqrt{(1 - q)^2 + p^2}}\right)^2 = \frac{p^2}{(1 - q)^2 + p^2} \] \[ \cos^2(\alpha + \beta) = \left(\frac{1 - q}{\sqrt{(1 - q)^2 + p^2}}\right)^2 = \frac{(1 - q)^2}{(1 - q)^2 + p^2} \] Now substituting these into the expression: \[ \sin^2(\alpha + \beta) + p \sin(\alpha + \beta) \cos(\alpha + \beta) + q \cos^2(\alpha + \beta) \] ### Step 5: Simplify the expression Combining all terms: \[ \frac{p^2}{(1 - q)^2 + p^2} + p \left(\frac{-p}{\sqrt{(1 - q)^2 + p^2}}\right) \left(\frac{1 - q}{\sqrt{(1 - q)^2 + p^2}}\right) + q \frac{(1 - q)^2}{(1 - q)^2 + p^2} \] This simplifies to: \[ \frac{p^2 + q(1 - q)^2 - p^2(1 - q)}{(1 - q)^2 + p^2} \] After further simplification, we find that the expression reduces to: \[ q \] ### Final Result Thus, the value of the expression is: \[ \boxed{q} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|20 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|11 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 11|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

If tan alpha tan beta are the roots of the equation x^2 + px +q =0(p!=0) then

Q. If tan alpha and tan beta are the roots of equation x^2-12x-3=0 , then the value of sin^2(alpha+beta)+2sin(alpha+beta)cos(alpha+beta)+5cos^2(alpha+beta) is

If alpha and beta are the roots of the equation px^(2) + qx + 1 = , find alpha^(2) beta + beta^(2)alpha .

If alpha and beta are the roots of the equation x^2-px + q = 0 then the value of (alpha+beta)x -((alpha^2+beta^2)/2)x^2+((alpha^3+beta^3)/3)x^3+... is

If alpha and beta are the roots of the equation x^2-px + q = 0 then the value of (alpha+beta)x -((alpha^2+beta^2)/2)x^2+((alpha^3+beta^3)/3)x^3+... is

If cos(alpha+beta)=0 then sin(alpha+2beta)=

Prove that: cos2alpha\ cos2beta+sin^2(alpha-beta)-sin^2(alpha+beta)=cos2(alpha+beta) .

If alpha , beta are the roots of the equation x^(2)-px+q=0 , then (alpha^(2))/(beta^(2))+(beta^(2))/(alpha^(2)) is equal to :

If alpha and beta are roots of the equation x^(2)-2x+1=0 , then the value of (alpha)/(beta)+(beta)/(alpha) is

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^2 beta + sum alpha beta ^2

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Single Option Correct Type Questions)
  1. The value of the expression sum(theta =0)^8 1/(1 + tan^3 (10theta)^@) ...

    Text Solution

    |

  2. the value of sqrt(1-sin^2 11 0^(@))*sec11 0^(@)

    Text Solution

    |

  3. If tan alpha ,tan beta are th roots of the eqution x^2+px+q=0 (p !=...

    Text Solution

    |

  4. sin(pi/2^2009)cos(pi/2^2009)cos(pi/2^2008).....cos(pi/2^2) is

    Text Solution

    |

  5. If tanB= (nsinA cosA)/(1-ncos^2A)then tan(A +B) equals

    Text Solution

    |

  6. If pi=(tan(3^(n+1)theta)-tan theta) and Q=sum(r=0)^(n) (sin(3^(r )thet...

    Text Solution

    |

  7. Find the value of (cos^(4)1^(@)+cos^(4)2^(@)+cos^(4)3^(@)+......+cos^(...

    Text Solution

    |

  8. Suppose that 'a' is a non-zero real number for which sin x+sin y=a and...

    Text Solution

    |

  9. Let P(x)=sqrt(( cosx +cos2x+cos3x)^2+ (sin x + sin 2x+sin3x)^2) then P...

    Text Solution

    |

  10. If the maximum value of the expression 1/(5sec^2theta-tan^2theta+4cose...

    Text Solution

    |

  11. Let fn(a)=(sinalpha+sin3alpha+sin5alpha+...+sin(2n-1)alpha)/(cosalpha+...

    Text Solution

    |

  12. The minimum value of |sinx+cosx+(cosx+sinx)/(cos^(4)x-sin^(4)x)| is

    Text Solution

    |

  13. If a = cos (2012 pi), b = sec (2013 pi) and c = tan (2014 pi) then

    Text Solution

    |

  14. In a Delta ABC, the minimum value of sec^(2). (A)/(2)+sec^(2). (B)/...

    Text Solution

    |

  15. The number of ordered pairs (x, y) of real number satisfying 4x^2 - 4...

    Text Solution

    |

  16. In a DeltaABC,3 sin A+4 cos B=6 and 3 cos A+4 sinB=1, then angleC can ...

    Text Solution

    |

  17. An equilateral triangle has side length 8. The area of the region cont...

    Text Solution

    |

  18. If a cos^3 alpha +3acosalpha*sin alpha = m and a sin^3alpha +3a cos^3a...

    Text Solution

    |

  19. If AD is the altitude on BC and AD produced meets the circumcircle of ...

    Text Solution

    |

  20. One side of a rectangular piece of paper is 6 cm, the adjacent sides b...

    Text Solution

    |