Home
Class 12
MATHS
sin(pi/2^2009)cos(pi/2^2009)cos(pi/2^200...

`sin(pi/2^2009)cos(pi/2^2009)cos(pi/2^2008).....cos(pi/2^2)` is

A

`(1)/(2^(2007))`

B

`(1)/(2^(2008))`

C

`(1)/(2^(2009))`

D

`(1)/(2^(2010))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sin\left(\frac{\pi}{2^{2009}}\right) \cos\left(\frac{\pi}{2^{2009}}\right) \cos\left(\frac{\pi}{2^{2008}}\right) \cdots \cos\left(\frac{\pi}{2^2}\right) \), we will use the identity \( \sin(2\theta) = 2 \sin(\theta) \cos(\theta) \). ### Step-by-Step Solution: 1. **Define the Expression**: Let \[ y = \sin\left(\frac{\pi}{2^{2009}}\right) \cos\left(\frac{\pi}{2^{2009}}\right) \cos\left(\frac{\pi}{2^{2008}}\right) \cdots \cos\left(\frac{\pi}{2^2}\right). \] 2. **Use the Double Angle Identity**: We know that \[ \sin(2\theta) = 2 \sin(\theta) \cos(\theta). \] Therefore, we can rewrite \( \sin\left(\frac{\pi}{2^{2009}}\right) \cos\left(\frac{\pi}{2^{2009}}\right) \) as: \[ \sin\left(\frac{\pi}{2^{2009}}\right) \cos\left(\frac{\pi}{2^{2009}}\right) = \frac{1}{2} \sin\left(\frac{\pi}{2^{2008}}\right). \] Thus, we have: \[ y = \frac{1}{2} \sin\left(\frac{\pi}{2^{2008}}\right) \cos\left(\frac{\pi}{2^{2008}}\right) \cos\left(\frac{\pi}{2^{2007}}\right) \cdots \cos\left(\frac{\pi}{2^2}\right). \] 3. **Repeat the Process**: Now, we can apply the same identity to \( \sin\left(\frac{\pi}{2^{2008}}\right) \cos\left(\frac{\pi}{2^{2008}}\right) \): \[ \sin\left(\frac{\pi}{2^{2008}}\right) \cos\left(\frac{\pi}{2^{2008}}\right) = \frac{1}{2} \sin\left(\frac{\pi}{2^{2007}}\right). \] So now we have: \[ y = \frac{1}{2} \cdot \frac{1}{2} \sin\left(\frac{\pi}{2^{2007}}\right) \cos\left(\frac{\pi}{2^{2007}}\right) \cos\left(\frac{\pi}{2^{2006}}\right) \cdots \cos\left(\frac{\pi}{2^2}\right). \] 4. **Continue Until the Last Term**: Continuing this process, we will keep halving the expression and introducing sine terms until we reach: \[ y = \frac{1}{2^{2008}} \sin\left(\frac{\pi}{2^2}\right). \] 5. **Evaluate the Final Sine Term**: We know that: \[ \sin\left(\frac{\pi}{2^2}\right) = \sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}. \] Therefore, substituting this back into our expression gives: \[ y = \frac{1}{2^{2008}} \cdot \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2^{2009}}. \] ### Final Answer: \[ y = \frac{\sqrt{2}}{2^{2009}}. \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|20 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|11 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 11|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

The value of cos(pi/2^(2)).cos(pi/2^(3))……….cos(pi/2^(10)).sin(pi/2^(10)) is

the value of cos((pi)/(2^2)) cos((pi)/(2^3)) cos((pi)/(2^4)) ..... cos((pi)/(2^(10))) sin((pi)/(2^(10))) is (a) (1)/(1024) (b) (1)/(512) (c) (1)/(256) (d) (1)/(128)

The value of cos(pi/4)*cos(pi/8)*cos(pi/16)....cos(pi/(2^n)) equals

cos(pi/11) cos((2pi)/11) cos((3pi)/11)....cos((11pi)/11)=

Find the value of expression (cos(pi/2)+isin(pi/2))(cos(pi/(2^2))+isin(pi/(2^2))).......oo

Find the value of expression (cospi/2+i sin(pi/2))(cos(pi/(2^2))+i sin(pi/(2^2)))......oo

The period of sin(pi/4)x+cos(pi/2)x+cos(pi/3)x is

"cos(pi/15)cos((2pi)/15)cos((4pi)/15)cos((8pi)/15)=k

Find the value of 2cos((5pi)/12) cos(pi/12) and 2sin((5pi)/12)cos(pi/12)

lim_(n->oo)sum_(k=1)^n((sin)pi/(2k)-(cos)pi/(2k)-(sin)(pi/(2(k+2))+(cos)pi/(2(k+2)))=

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Single Option Correct Type Questions)
  1. the value of sqrt(1-sin^2 11 0^(@))*sec11 0^(@)

    Text Solution

    |

  2. If tan alpha ,tan beta are th roots of the eqution x^2+px+q=0 (p !=...

    Text Solution

    |

  3. sin(pi/2^2009)cos(pi/2^2009)cos(pi/2^2008).....cos(pi/2^2) is

    Text Solution

    |

  4. If tanB= (nsinA cosA)/(1-ncos^2A)then tan(A +B) equals

    Text Solution

    |

  5. If pi=(tan(3^(n+1)theta)-tan theta) and Q=sum(r=0)^(n) (sin(3^(r )thet...

    Text Solution

    |

  6. Find the value of (cos^(4)1^(@)+cos^(4)2^(@)+cos^(4)3^(@)+......+cos^(...

    Text Solution

    |

  7. Suppose that 'a' is a non-zero real number for which sin x+sin y=a and...

    Text Solution

    |

  8. Let P(x)=sqrt(( cosx +cos2x+cos3x)^2+ (sin x + sin 2x+sin3x)^2) then P...

    Text Solution

    |

  9. If the maximum value of the expression 1/(5sec^2theta-tan^2theta+4cose...

    Text Solution

    |

  10. Let fn(a)=(sinalpha+sin3alpha+sin5alpha+...+sin(2n-1)alpha)/(cosalpha+...

    Text Solution

    |

  11. The minimum value of |sinx+cosx+(cosx+sinx)/(cos^(4)x-sin^(4)x)| is

    Text Solution

    |

  12. If a = cos (2012 pi), b = sec (2013 pi) and c = tan (2014 pi) then

    Text Solution

    |

  13. In a Delta ABC, the minimum value of sec^(2). (A)/(2)+sec^(2). (B)/...

    Text Solution

    |

  14. The number of ordered pairs (x, y) of real number satisfying 4x^2 - 4...

    Text Solution

    |

  15. In a DeltaABC,3 sin A+4 cos B=6 and 3 cos A+4 sinB=1, then angleC can ...

    Text Solution

    |

  16. An equilateral triangle has side length 8. The area of the region cont...

    Text Solution

    |

  17. If a cos^3 alpha +3acosalpha*sin alpha = m and a sin^3alpha +3a cos^3a...

    Text Solution

    |

  18. If AD is the altitude on BC and AD produced meets the circumcircle of ...

    Text Solution

    |

  19. One side of a rectangular piece of paper is 6 cm, the adjacent sides b...

    Text Solution

    |

  20. Prove that the average of the numbers n sin n^@, n = 2,4,6...180 is c...

    Text Solution

    |