Home
Class 12
MATHS
Let P(x)=sqrt(( cosx +cos2x+cos3x)^2+ (s...

Let `P(x)=sqrt(( cosx +cos2x+cos3x)^2+ (sin x + sin 2x+sin3x)^2)` then P(x) is equal to

A

`1+2 cosx`

B

`1+sinx`

C

`1-2cosx`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find \( P(x) = \sqrt{(\cos x + \cos 2x + \cos 3x)^2 + (\sin x + \sin 2x + \sin 3x)^2} \), we will follow these steps: ### Step 1: Define the Function Let: \[ f(x) = \cos x + \cos 2x + \cos 3x \] \[ g(x) = \sin x + \sin 2x + \sin 3x \] Thus, we can rewrite \( P(x) \) as: \[ P(x) = \sqrt{f(x)^2 + g(x)^2} \] ### Step 2: Use the Formula for Squaring Sums Using the identity for squaring sums, we have: \[ f(x)^2 + g(x)^2 = (\cos x + \cos 2x + \cos 3x)^2 + (\sin x + \sin 2x + \sin 3x)^2 \] This can be expanded using the formula \( (a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab + ac + bc) \). ### Step 3: Expand \( f(x)^2 \) and \( g(x)^2 \) Expanding \( f(x)^2 \): \[ f(x)^2 = \cos^2 x + \cos^2 2x + \cos^2 3x + 2(\cos x \cos 2x + \cos x \cos 3x + \cos 2x \cos 3x) \] Expanding \( g(x)^2 \): \[ g(x)^2 = \sin^2 x + \sin^2 2x + \sin^2 3x + 2(\sin x \sin 2x + \sin x \sin 3x + \sin 2x \sin 3x) \] ### Step 4: Use the Pythagorean Identity Using the identity \( \cos^2 \theta + \sin^2 \theta = 1 \): \[ \cos^2 x + \sin^2 x = 1 \] \[ \cos^2 2x + \sin^2 2x = 1 \] \[ \cos^2 3x + \sin^2 3x = 1 \] Thus, we have: \[ f(x)^2 + g(x)^2 = 3 + 2(\cos x \cos 2x + \cos x \cos 3x + \cos 2x \cos 3x + \sin x \sin 2x + \sin x \sin 3x + \sin 2x \sin 3x) \] ### Step 5: Use Product-to-Sum Formulas Using the product-to-sum formulas: \[ \cos A \cos B + \sin A \sin B = \cos(A - B) \] We can simplify the terms: - \( \cos x \cos 2x + \sin x \sin 2x = \cos(x - 2x) = \cos(-x) = \cos x \) - \( \cos x \cos 3x + \sin x \sin 3x = \cos(x - 3x) = \cos(-2x) = \cos 2x \) - \( \cos 2x \cos 3x + \sin 2x \sin 3x = \cos(2x - 3x) = \cos(-x) = \cos x \) ### Step 6: Combine the Results Thus, we have: \[ f(x)^2 + g(x)^2 = 3 + 2(\cos x + \cos 2x + \cos x) = 3 + 4 \cos x \] ### Step 7: Final Expression for \( P(x) \) Now substituting back into \( P(x) \): \[ P(x) = \sqrt{3 + 4 \cos x} \] ### Conclusion Thus, the final result is: \[ P(x) = \sqrt{1 + 2(1 + 2 \cos x)} = \sqrt{1 + 2 \cos x} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|20 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|11 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 11|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

sqrt(sin 2x) cos 2x

Evaluate int_(0)^(pi)sqrt((cosx+cos2x+cos3x)^(2)+(sinx+sin2x+sin3x)^(2))dx

If 3cosx + 2cos3x=cosy , 3sinx + 2sin3x =siny , then cos2x equals

( cos 4x + cos 3x + cos 2x )/( sin 4x + sin 3x + sin 2x) = cot3x

(1 + sin 2x + cos 2x )/( cos x + sin x ) = 2 cos x

If cos2x+2 cos x=1 , then (sin^(2)x)(2-cos^(2)x) is equal to

int ( sin^(6) x + cos ^(6) x + 3 sin ^(2) x cos ^(2) x ) dx is equal to

int_(0)^(pi//2) ( cos x - sin x )/( 2 + sin x cos x ) dx is equal to

If 2y=(cot^(-1)((sqrt3 cos x + sin x)/(cos x - sqrt3 sin x)))^(2) , x in (0, pi/2) " then " (dy)/(dx) is equal to

Prove that (cos4x+cos3x+cos2x)/(sin4x+sin3x+sin2x)=cot3x

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Single Option Correct Type Questions)
  1. Find the value of (cos^(4)1^(@)+cos^(4)2^(@)+cos^(4)3^(@)+......+cos^(...

    Text Solution

    |

  2. Suppose that 'a' is a non-zero real number for which sin x+sin y=a and...

    Text Solution

    |

  3. Let P(x)=sqrt(( cosx +cos2x+cos3x)^2+ (sin x + sin 2x+sin3x)^2) then P...

    Text Solution

    |

  4. If the maximum value of the expression 1/(5sec^2theta-tan^2theta+4cose...

    Text Solution

    |

  5. Let fn(a)=(sinalpha+sin3alpha+sin5alpha+...+sin(2n-1)alpha)/(cosalpha+...

    Text Solution

    |

  6. The minimum value of |sinx+cosx+(cosx+sinx)/(cos^(4)x-sin^(4)x)| is

    Text Solution

    |

  7. If a = cos (2012 pi), b = sec (2013 pi) and c = tan (2014 pi) then

    Text Solution

    |

  8. In a Delta ABC, the minimum value of sec^(2). (A)/(2)+sec^(2). (B)/...

    Text Solution

    |

  9. The number of ordered pairs (x, y) of real number satisfying 4x^2 - 4...

    Text Solution

    |

  10. In a DeltaABC,3 sin A+4 cos B=6 and 3 cos A+4 sinB=1, then angleC can ...

    Text Solution

    |

  11. An equilateral triangle has side length 8. The area of the region cont...

    Text Solution

    |

  12. If a cos^3 alpha +3acosalpha*sin alpha = m and a sin^3alpha +3a cos^3a...

    Text Solution

    |

  13. If AD is the altitude on BC and AD produced meets the circumcircle of ...

    Text Solution

    |

  14. One side of a rectangular piece of paper is 6 cm, the adjacent sides b...

    Text Solution

    |

  15. Prove that the average of the numbers n sin n^@, n = 2,4,6...180 is c...

    Text Solution

    |

  16. A circle is inscribed inside a regular pentagon and another circle is ...

    Text Solution

    |

  17. The value of sum(r=1)^(18) cos^(2)(5r)^(@), where x^(@) denotes the x ...

    Text Solution

    |

  18. Minimum value of 4x^2-4x|sin theta|-cos^2 theta is equal

    Text Solution

    |

  19. In a triangle ABC, cos 3A + cos 3B + cos 3C = 1, then find any one ang...

    Text Solution

    |

  20. (sqrt(1+sin 2A)+sqrt(1-sin 2A) )/(sqrt(1 + sin 2A)-sqrt(1-sin2A)) If |...

    Text Solution

    |