Home
Class 12
MATHS
Let P(x)=sqrt(( cosx +cos2x+cos3x)^2+ (s...

Let `P(x)=sqrt(( cosx +cos2x+cos3x)^2+ (sin x + sin 2x+sin3x)^2)` then P(x) is equal to

A

`1+2 cosx`

B

`1+sinx`

C

`1-2cosx`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find \( P(x) = \sqrt{(\cos x + \cos 2x + \cos 3x)^2 + (\sin x + \sin 2x + \sin 3x)^2} \), we will follow these steps: ### Step 1: Define the Function Let: \[ f(x) = \cos x + \cos 2x + \cos 3x \] \[ g(x) = \sin x + \sin 2x + \sin 3x \] Thus, we can rewrite \( P(x) \) as: \[ P(x) = \sqrt{f(x)^2 + g(x)^2} \] ### Step 2: Use the Formula for Squaring Sums Using the identity for squaring sums, we have: \[ f(x)^2 + g(x)^2 = (\cos x + \cos 2x + \cos 3x)^2 + (\sin x + \sin 2x + \sin 3x)^2 \] This can be expanded using the formula \( (a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab + ac + bc) \). ### Step 3: Expand \( f(x)^2 \) and \( g(x)^2 \) Expanding \( f(x)^2 \): \[ f(x)^2 = \cos^2 x + \cos^2 2x + \cos^2 3x + 2(\cos x \cos 2x + \cos x \cos 3x + \cos 2x \cos 3x) \] Expanding \( g(x)^2 \): \[ g(x)^2 = \sin^2 x + \sin^2 2x + \sin^2 3x + 2(\sin x \sin 2x + \sin x \sin 3x + \sin 2x \sin 3x) \] ### Step 4: Use the Pythagorean Identity Using the identity \( \cos^2 \theta + \sin^2 \theta = 1 \): \[ \cos^2 x + \sin^2 x = 1 \] \[ \cos^2 2x + \sin^2 2x = 1 \] \[ \cos^2 3x + \sin^2 3x = 1 \] Thus, we have: \[ f(x)^2 + g(x)^2 = 3 + 2(\cos x \cos 2x + \cos x \cos 3x + \cos 2x \cos 3x + \sin x \sin 2x + \sin x \sin 3x + \sin 2x \sin 3x) \] ### Step 5: Use Product-to-Sum Formulas Using the product-to-sum formulas: \[ \cos A \cos B + \sin A \sin B = \cos(A - B) \] We can simplify the terms: - \( \cos x \cos 2x + \sin x \sin 2x = \cos(x - 2x) = \cos(-x) = \cos x \) - \( \cos x \cos 3x + \sin x \sin 3x = \cos(x - 3x) = \cos(-2x) = \cos 2x \) - \( \cos 2x \cos 3x + \sin 2x \sin 3x = \cos(2x - 3x) = \cos(-x) = \cos x \) ### Step 6: Combine the Results Thus, we have: \[ f(x)^2 + g(x)^2 = 3 + 2(\cos x + \cos 2x + \cos x) = 3 + 4 \cos x \] ### Step 7: Final Expression for \( P(x) \) Now substituting back into \( P(x) \): \[ P(x) = \sqrt{3 + 4 \cos x} \] ### Conclusion Thus, the final result is: \[ P(x) = \sqrt{1 + 2(1 + 2 \cos x)} = \sqrt{1 + 2 \cos x} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|20 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|11 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 11|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

sqrt(sin 2x) cos 2x

Evaluate int_(0)^(pi)sqrt((cosx+cos2x+cos3x)^(2)+(sinx+sin2x+sin3x)^(2))dx

Knowledge Check

  • int ( sin^(6) x + cos ^(6) x + 3 sin ^(2) x cos ^(2) x ) dx is equal to

    A
    `x +C`
    B
    ` ( 3)/( 2) sin 2x +C`
    C
    ` - ( 3)/( 2) cos 2x + C`
    D
    none of these
  • int_(0)^(pi//2) ( cos x - sin x )/( 2 + sin x cos x ) dx is equal to

    A
    0
    B
    `(pi)/( 6)`
    C
    `(pi)/( 4)`
    D
    `(pi)/( 2)`
  • Similar Questions

    Explore conceptually related problems

    If 3cosx + 2cos3x=cosy , 3sinx + 2sin3x =siny , then cos2x equals

    ( cos 4x + cos 3x + cos 2x )/( sin 4x + sin 3x + sin 2x) = cot3x

    (1 + sin 2x + cos 2x )/( cos x + sin x ) = 2 cos x

    If cos2x+2 cos x=1 , then (sin^(2)x)(2-cos^(2)x) is equal to

    If 2y=(cot^(-1)((sqrt3 cos x + sin x)/(cos x - sqrt3 sin x)))^(2) , x in (0, pi/2) " then " (dy)/(dx) is equal to

    Prove that (cos4x+cos3x+cos2x)/(sin4x+sin3x+sin2x)=cot3x