Home
Class 12
MATHS
Let fn(a)=(sinalpha+sin3alpha+sin5alpha+...

Let `f_n(a)=(sinalpha+sin3alpha+sin5alpha+...+sin(2n-1)alpha)/(cosalpha+cos3alpha+cos5alpha+...+cos(2n-1)alpha)` Then, the value of `f_4(pi/32)` is equal to

A

`sqrt(2)+1`

B

`sqrt(2)-1`

C

`2+sqrt(3)`

D

`2-sqrt(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the function: \[ f_n(a) = \frac{\sin \alpha + \sin 3\alpha + \sin 5\alpha + \ldots + \sin(2n-1)\alpha}{\cos \alpha + \cos 3\alpha + \cos 5\alpha + \ldots + \cos(2n-1)\alpha} \] For \( n = 4 \) and \( \alpha = \frac{\pi}{32} \), we have: \[ f_4\left(\frac{\pi}{32}\right) = \frac{\sin\left(\frac{\pi}{32}\right) + \sin\left(\frac{3\pi}{32}\right) + \sin\left(\frac{5\pi}{32}\right) + \sin\left(\frac{7\pi}{32}\right)}{\cos\left(\frac{\pi}{32}\right) + \cos\left(\frac{3\pi}{32}\right) + \cos\left(\frac{5\pi}{32}\right) + \cos\left(\frac{7\pi}{32}\right)} \] ### Step 1: Combine Sine Terms We can use the sine addition formula to combine the terms in the numerator: \[ \sin a + \sin b = 2 \sin\left(\frac{a+b}{2}\right) \cos\left(\frac{a-b}{2}\right) \] We will pair the terms: 1. \(\sin\left(\frac{\pi}{32}\right) + \sin\left(\frac{7\pi}{32}\right)\) 2. \(\sin\left(\frac{3\pi}{32}\right) + \sin\left(\frac{5\pi}{32}\right)\) Calculating the first pair: \[ \sin\left(\frac{\pi}{32}\right) + \sin\left(\frac{7\pi}{32}\right) = 2 \sin\left(\frac{\frac{\pi}{32} + \frac{7\pi}{32}}{2}\right) \cos\left(\frac{\frac{7\pi}{32} - \frac{\pi}{32}}{2}\right) = 2 \sin\left(\frac{4\pi}{32}\right) \cos\left(\frac{3\pi}{32}\right) = 2 \sin\left(\frac{\pi}{8}\right) \cos\left(\frac{3\pi}{32}\right) \] Calculating the second pair: \[ \sin\left(\frac{3\pi}{32}\right) + \sin\left(\frac{5\pi}{32}\right) = 2 \sin\left(\frac{\frac{3\pi}{32} + \frac{5\pi}{32}}{2}\right) \cos\left(\frac{\frac{5\pi}{32} - \frac{3\pi}{32}}{2}\right) = 2 \sin\left(\frac{4\pi}{32}\right) \cos\left(\frac{\pi}{32}\right) = 2 \sin\left(\frac{\pi}{8}\right) \cos\left(\frac{\pi}{32}\right) \] Combining both results: \[ \text{Numerator} = 2 \sin\left(\frac{\pi}{8}\right) \left(\cos\left(\frac{3\pi}{32}\right) + \cos\left(\frac{\pi}{32}\right)\right) \] ### Step 2: Combine Cosine Terms Now, we will combine the cosine terms in the denominator: Using the same pairing: 1. \(\cos\left(\frac{\pi}{32}\right) + \cos\left(\frac{7\pi}{32}\right)\) 2. \(\cos\left(\frac{3\pi}{32}\right) + \cos\left(\frac{5\pi}{32}\right)\) Calculating the first pair: \[ \cos\left(\frac{\pi}{32}\right) + \cos\left(\frac{7\pi}{32}\right) = 2 \cos\left(\frac{\frac{\pi}{32} + \frac{7\pi}{32}}{2}\right) \cos\left(\frac{\frac{7\pi}{32} - \frac{\pi}{32}}{2}\right) = 2 \cos\left(\frac{4\pi}{32}\right) \cos\left(\frac{3\pi}{32}\right) = 2 \cos\left(\frac{\pi}{8}\right) \cos\left(\frac{3\pi}{32}\right) \] Calculating the second pair: \[ \cos\left(\frac{3\pi}{32}\right) + \cos\left(\frac{5\pi}{32}\right) = 2 \cos\left(\frac{\frac{3\pi}{32} + \frac{5\pi}{32}}{2}\right) \cos\left(\frac{\frac{5\pi}{32} - \frac{3\pi}{32}}{2}\right) = 2 \cos\left(\frac{4\pi}{32}\right) \cos\left(\frac{\pi}{32}\right) = 2 \cos\left(\frac{\pi}{8}\right) \cos\left(\frac{\pi}{32}\right) \] Combining both results: \[ \text{Denominator} = 2 \cos\left(\frac{\pi}{8}\right) \left(\cos\left(\frac{3\pi}{32}\right) + \cos\left(\frac{\pi}{32}\right)\right) \] ### Step 3: Simplifying the Function Now, substituting back into \( f_4\left(\frac{\pi}{32}\right) \): \[ f_4\left(\frac{\pi}{32}\right) = \frac{2 \sin\left(\frac{\pi}{8}\right) \left(\cos\left(\frac{3\pi}{32}\right) + \cos\left(\frac{\pi}{32}\right)\right)}{2 \cos\left(\frac{\pi}{8}\right) \left(\cos\left(\frac{3\pi}{32}\right) + \cos\left(\frac{\pi}{32}\right)\right)} \] The terms \(\left(\cos\left(\frac{3\pi}{32}\right) + \cos\left(\frac{\pi}{32}\right)\right)\) cancel out: \[ f_4\left(\frac{\pi}{32}\right) = \frac{\sin\left(\frac{\pi}{8}\right)}{\cos\left(\frac{\pi}{8}\right)} = \tan\left(\frac{\pi}{8}\right) \] ### Step 4: Finding the Value of \(\tan\left(\frac{\pi}{8}\right)\) Using the half-angle identity: \[ \tan\left(\frac{\pi}{8}\right) = \sqrt{2} - 1 \] ### Final Result Thus, the value of \( f_4\left(\frac{\pi}{32}\right) \) is: \[ \sqrt{2} - 1 \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|20 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|11 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 11|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

The value of (sin5alpha-sin3alpha)/(cos5alpha+2cos4alpha+cos3alpha) is

1/(cosalpha+cos3alpha)+1/(cosalpha+cos5alpha)....1/(cosalpha+cos(2n+1)alpha

(cos alpha + 2 cos 3 alpha + cos 5 alpha )/(cos 3 alpha + 2 cos 5 alpha + cos 7 alpha ) = cos 3 alpha sec 5 alpha .

Prove that sinalpha*sin(60-alpha)sin(60+alpha) = 1/4*sin3alpha

Let t_(1)=(sin alpha)^(cos alpha), t_(2)=(sin alpha)^(sin alpha), t_(3)=(cosalpha)^(cos alpha), t_(4)=(cosalpha)^(sin alpha) , where alpha in (0, (pi)/(4)) , then which of the following is correct

The value of (sin(pi-alpha))/(sin alpha-cos alpha tan.(alpha)/(2))-cos alpha is

find the value of (cos^3alpha+sin^3alpha)/(1-sin(alpha).cos(alpha))

If tan theta=(sin alpha- cos alpha)/(sin alpha+cos alpha) , then:

If alpha = pi/3 , prove that cos alpha*cos 2alpha*cos 3alpha*cos 4alpha*cos 5alpha*cos 6alpha = -1/16 .

If alpha = pi/3 , prove that cos alpha*cos 2alpha*cos 3alpha*cos 4alpha*cos 5alpha*cos 6alpha = -1/16 .

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Single Option Correct Type Questions)
  1. Let P(x)=sqrt(( cosx +cos2x+cos3x)^2+ (sin x + sin 2x+sin3x)^2) then P...

    Text Solution

    |

  2. If the maximum value of the expression 1/(5sec^2theta-tan^2theta+4cose...

    Text Solution

    |

  3. Let fn(a)=(sinalpha+sin3alpha+sin5alpha+...+sin(2n-1)alpha)/(cosalpha+...

    Text Solution

    |

  4. The minimum value of |sinx+cosx+(cosx+sinx)/(cos^(4)x-sin^(4)x)| is

    Text Solution

    |

  5. If a = cos (2012 pi), b = sec (2013 pi) and c = tan (2014 pi) then

    Text Solution

    |

  6. In a Delta ABC, the minimum value of sec^(2). (A)/(2)+sec^(2). (B)/...

    Text Solution

    |

  7. The number of ordered pairs (x, y) of real number satisfying 4x^2 - 4...

    Text Solution

    |

  8. In a DeltaABC,3 sin A+4 cos B=6 and 3 cos A+4 sinB=1, then angleC can ...

    Text Solution

    |

  9. An equilateral triangle has side length 8. The area of the region cont...

    Text Solution

    |

  10. If a cos^3 alpha +3acosalpha*sin alpha = m and a sin^3alpha +3a cos^3a...

    Text Solution

    |

  11. If AD is the altitude on BC and AD produced meets the circumcircle of ...

    Text Solution

    |

  12. One side of a rectangular piece of paper is 6 cm, the adjacent sides b...

    Text Solution

    |

  13. Prove that the average of the numbers n sin n^@, n = 2,4,6...180 is c...

    Text Solution

    |

  14. A circle is inscribed inside a regular pentagon and another circle is ...

    Text Solution

    |

  15. The value of sum(r=1)^(18) cos^(2)(5r)^(@), where x^(@) denotes the x ...

    Text Solution

    |

  16. Minimum value of 4x^2-4x|sin theta|-cos^2 theta is equal

    Text Solution

    |

  17. In a triangle ABC, cos 3A + cos 3B + cos 3C = 1, then find any one ang...

    Text Solution

    |

  18. (sqrt(1+sin 2A)+sqrt(1-sin 2A) )/(sqrt(1 + sin 2A)-sqrt(1-sin2A)) If |...

    Text Solution

    |

  19. For any real theta, the maximum value of cos^(2)(costheta)+sin^(2)(sin...

    Text Solution

    |

  20. Find the ragne of the expression 27^(cos 2x) 81^(sin 2x)

    Text Solution

    |