Home
Class 12
MATHS
Prove that the average of the numbers n ...

Prove that the average of the numbers `n sin n^@`, `n = 2,4,6...180` is `cot 1^@`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that the average of the numbers \( n \sin n^\circ \) for \( n = 2, 4, 6, \ldots, 180 \) is \( \cot 1^\circ \), we will follow these steps: ### Step 1: Identify the terms and their sum The terms we are considering are: \[ 2 \sin 2^\circ, 4 \sin 4^\circ, 6 \sin 6^\circ, \ldots, 180 \sin 180^\circ \] The average \( A \) of these terms can be expressed as: \[ A = \frac{2 \sin 2^\circ + 4 \sin 4^\circ + 6 \sin 6^\circ + \ldots + 180 \sin 180^\circ}{\text{Total number of terms}} \] ### Step 2: Determine the total number of terms The sequence \( n = 2, 4, 6, \ldots, 180 \) consists of even numbers from 2 to 180. The total number of terms can be calculated as: \[ \text{Total number of terms} = \frac{180 - 2}{2} + 1 = 90 \] ### Step 3: Simplify the sum Since \( \sin 180^\circ = 0 \), we only need to sum up to \( 178 \): \[ A = \frac{2 \sin 2^\circ + 4 \sin 4^\circ + \ldots + 178 \sin 178^\circ}{90} \] ### Step 4: Use the sine identity Using the identity \( \sin(180^\circ - x) = \sin x \), we can pair the terms: \[ \sin 178^\circ = \sin 2^\circ, \quad \sin 176^\circ = \sin 4^\circ, \quad \ldots, \quad \sin 92^\circ = \sin 88^\circ \] This allows us to rewrite the average as: \[ A = \frac{(2 + 178) \sin 2^\circ + (4 + 176) \sin 4^\circ + \ldots + (88 + 92) \sin 88^\circ + 90 \sin 90^\circ}{90} \] ### Step 5: Combine terms Each pair sums to 180: \[ A = \frac{180 (\sin 2^\circ + \sin 4^\circ + \ldots + \sin 88^\circ) + 90}{90} \] This simplifies to: \[ A = 2(\sin 2^\circ + \sin 4^\circ + \ldots + \sin 88^\circ) + 1 \] ### Step 6: Use the sine summation formula The formula for the sum of sines is: \[ \sum_{k=1}^{n} \sin(k \theta) = \frac{\sin\left(\frac{n \theta}{2}\right) \sin\left(\frac{(n+1) \theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)} \] For \( \theta = 2^\circ \) and \( n = 44 \): \[ \sum_{k=1}^{44} \sin(2k^\circ) = \frac{\sin(89^\circ) \sin(90^\circ)}{\sin(1^\circ)} = \frac{\sin(89^\circ)}{\sin(1^\circ)} = \frac{\cos(1^\circ)}{\sin(1^\circ)} = \cot(1^\circ) \] ### Step 7: Substitute back into the average Now substituting this back into our average: \[ A = 2 \cdot \cot(1^\circ) + 1 \] ### Step 8: Final simplification Thus, we find: \[ A = \cot(1^\circ) \] ### Conclusion Hence, we have proved that the average of the numbers \( n \sin n^\circ \) for \( n = 2, 4, 6, \ldots, 180 \) is indeed \( \cot(1^\circ) \). ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|20 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|11 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 11|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

The arithmetic mean of the numbers 2s in2^0,4sin4^0,6sin^0, ddot, 178s in 178^0,180sin180^0 is sin1^0 b. "tan"1^0 c. cot1^0 d. t a n 89^0

Prove that ((n + 1)/(2))^(n) gt n!

Prove that 2 sin 2^(@)+4sin 4^(@)+6sin 6^(@)+........+180sin 180^(@)=90 cot 1^(@) .

Prove that n! (n+2) = n! +(n+1)! .

Prove that t a n A+2t a n2A+4t a n4A+8cot8A=cot Adot

Prove that: n !(n+2)=n !+(n+1)!

Prove that [(n+1)//2]^n >(n !)dot

The average of n numbers x_(1),x_(2),x_(3),..,x_(n) is M. If x_(n) is replaced by x', then new average is

prove that 2+4+6+…2n=n^(2)+n , for all natural numbers n.

Prove that ((n^(2))!)/((n!)^(n)) is a natural number for all n in N.

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Single Option Correct Type Questions)
  1. If AD is the altitude on BC and AD produced meets the circumcircle of ...

    Text Solution

    |

  2. One side of a rectangular piece of paper is 6 cm, the adjacent sides b...

    Text Solution

    |

  3. Prove that the average of the numbers n sin n^@, n = 2,4,6...180 is c...

    Text Solution

    |

  4. A circle is inscribed inside a regular pentagon and another circle is ...

    Text Solution

    |

  5. The value of sum(r=1)^(18) cos^(2)(5r)^(@), where x^(@) denotes the x ...

    Text Solution

    |

  6. Minimum value of 4x^2-4x|sin theta|-cos^2 theta is equal

    Text Solution

    |

  7. In a triangle ABC, cos 3A + cos 3B + cos 3C = 1, then find any one ang...

    Text Solution

    |

  8. (sqrt(1+sin 2A)+sqrt(1-sin 2A) )/(sqrt(1 + sin 2A)-sqrt(1-sin2A)) If |...

    Text Solution

    |

  9. For any real theta, the maximum value of cos^(2)(costheta)+sin^(2)(sin...

    Text Solution

    |

  10. Find the ragne of the expression 27^(cos 2x) 81^(sin 2x)

    Text Solution

    |

  11. ABCD is a trapezium such that AB and CD are parallel and BC bot CD. If...

    Text Solution

    |

  12. If 4nalpha =pi then cot alpha cot 2 alpha cot 3alpha ...cot (2n-1)alph...

    Text Solution

    |

  13. In DeltaABC, if (Sin A + SinB + SinC) (SinA + SinB - SinC) = 3SinA Sin...

    Text Solution

    |

  14. If t a nbeta=(ns inalphacosalpha)/(1-ns in^2alpha) , show that tan(alp...

    Text Solution

    |

  15. If (cos theta)/(a)=(sintheta)/(b), then (a)/(sec 2 theta)+(b)/(cosec 2...

    Text Solution

    |

  16. The graph of the function y = cos x cos (x+2) - cos^(2)(x+1) is

    Text Solution

    |

  17. If f (theta) = |sin theta| + |cos theta|, theta in R, then

    Text Solution

    |

  18. If P=cos(cos x)+sin (cos x), then the least and greatest value of P re...

    Text Solution

    |

  19. If u(n)=sin(n theta) sec^(n) theta, v(n)=cos(n theta) sec^(n) theta ,...

    Text Solution

    |

  20. If 0lex le(pi)/(3) then range of f(x)=sec((pi)/(6)-x)+sec((pi)/(6)+x) ...

    Text Solution

    |