Home
Class 12
MATHS
In a triangle ABC, cos 3A + cos 3B + cos...

In a triangle `ABC, cos 3A + cos 3B + cos 3C = 1`, then find any one angle.

A

`pi/3`

B

`(2pi)/(3)`

C

`pi`

D

`(4pi)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \cos 3A + \cos 3B + \cos 3C = 1 \) in triangle \( ABC \), we can follow these steps: ### Step 1: Use the Angle Sum Property In a triangle, the sum of the angles is \( A + B + C = 180^\circ \). We can express \( C \) in terms of \( A \) and \( B \): \[ C = 180^\circ - A - B \] ### Step 2: Substitute into the Given Equation Substituting \( C \) into the equation gives: \[ \cos 3A + \cos 3B + \cos(3(180^\circ - A - B)) = 1 \] Using the cosine identity \( \cos(180^\circ - x) = -\cos x \), we can rewrite \( \cos(3C) \): \[ \cos(3C) = \cos(540^\circ - 3A - 3B) = -\cos(3A + 3B) \] Thus, the equation becomes: \[ \cos 3A + \cos 3B - \cos(3A + 3B) = 1 \] ### Step 3: Use the Cosine Addition Formula Using the cosine addition formula \( \cos(A + B) = \cos A \cos B - \sin A \sin B \): \[ \cos 3A + \cos 3B - (\cos 3A \cos 3B - \sin 3A \sin 3B) = 1 \] This simplifies to: \[ \cos 3A + \cos 3B - \cos 3A \cos 3B + \sin 3A \sin 3B = 1 \] ### Step 4: Rearranging the Equation Rearranging gives: \[ \cos 3A + \cos 3B + \sin 3A \sin 3B - \cos 3A \cos 3B = 1 \] We can group terms: \[ 1 - \cos 3A \cos 3B + \sin 3A \sin 3B = 1 \] This implies: \[ -\cos 3A \cos 3B + \sin 3A \sin 3B = 0 \] ### Step 5: Factor the Equation Factoring gives: \[ \sin 3A \sin 3B = \cos 3A \cos 3B \] This can be rewritten as: \[ \tan 3A = \tan 3B \] Thus, we have: \[ 3A = 3B + n\pi \quad \text{for some integer } n \] This implies: \[ A = B + \frac{n\pi}{3} \] ### Step 6: Solve for Angles Since \( A + B + C = \pi \) (in radians), substituting \( A = B + \frac{n\pi}{3} \): \[ (B + \frac{n\pi}{3}) + B + C = \pi \] This simplifies to: \[ 2B + C + \frac{n\pi}{3} = \pi \] From here, we can find \( C \): \[ C = \pi - 2B - \frac{n\pi}{3} \] ### Step 7: Find Specific Angles Assuming \( n = 0 \): \[ C = \pi - 2B \] If we set \( B = \frac{\pi}{3} \): \[ C = \pi - 2 \cdot \frac{\pi}{3} = \frac{\pi}{3} \] Thus, \( A = B = \frac{\pi}{3} \) and \( C = \frac{\pi}{3} \). If we set \( B = \frac{2\pi}{3} \): \[ C = \pi - 2 \cdot \frac{2\pi}{3} = -\frac{\pi}{3} \quad \text{(not valid)} \] ### Conclusion Thus, one angle \( C \) can be \( \frac{2\pi}{3} \).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|20 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|11 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 11|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

In a triangle ABC, cos A+cos B+cos C=

In a triangle ABC, a (b cos C - c cos B) =

In a triangle ABC, sin A- cos B = Cos C , then angle B is

In a triangle ABC, cos 3A+cos 3B+cos3C=1 and angleA+angleBltangleC , then find possible measure of angleC .

In a Delta ABC , cos (A + B) + cos C =

In triangle ABC, if cos^(2)A + cos^(2)B - cos^(2) C = 1 , then identify the type of the triangle

If in a triangle ABC, cos A +cos B+cos C=3/2 , prove that the triangle is equilateral.

In a triangle ABC , if cos A cos B + sin A sin B sin C = 1 , then a:b:c is equal to

Statement I In any triangle ABC a cos A+b cos B+c cos C le s. Statement II In any triangle ABC sin ((A)/(2))sin ((B)/(2))sin ((C)/(2))le 1/8

In triangle ABC, if cos A + cos B + cos C = (7)/(4), " then " (R)/(r) is equal to

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Single Option Correct Type Questions)
  1. The value of sum(r=1)^(18) cos^(2)(5r)^(@), where x^(@) denotes the x ...

    Text Solution

    |

  2. Minimum value of 4x^2-4x|sin theta|-cos^2 theta is equal

    Text Solution

    |

  3. In a triangle ABC, cos 3A + cos 3B + cos 3C = 1, then find any one ang...

    Text Solution

    |

  4. (sqrt(1+sin 2A)+sqrt(1-sin 2A) )/(sqrt(1 + sin 2A)-sqrt(1-sin2A)) If |...

    Text Solution

    |

  5. For any real theta, the maximum value of cos^(2)(costheta)+sin^(2)(sin...

    Text Solution

    |

  6. Find the ragne of the expression 27^(cos 2x) 81^(sin 2x)

    Text Solution

    |

  7. ABCD is a trapezium such that AB and CD are parallel and BC bot CD. If...

    Text Solution

    |

  8. If 4nalpha =pi then cot alpha cot 2 alpha cot 3alpha ...cot (2n-1)alph...

    Text Solution

    |

  9. In DeltaABC, if (Sin A + SinB + SinC) (SinA + SinB - SinC) = 3SinA Sin...

    Text Solution

    |

  10. If t a nbeta=(ns inalphacosalpha)/(1-ns in^2alpha) , show that tan(alp...

    Text Solution

    |

  11. If (cos theta)/(a)=(sintheta)/(b), then (a)/(sec 2 theta)+(b)/(cosec 2...

    Text Solution

    |

  12. The graph of the function y = cos x cos (x+2) - cos^(2)(x+1) is

    Text Solution

    |

  13. If f (theta) = |sin theta| + |cos theta|, theta in R, then

    Text Solution

    |

  14. If P=cos(cos x)+sin (cos x), then the least and greatest value of P re...

    Text Solution

    |

  15. If u(n)=sin(n theta) sec^(n) theta, v(n)=cos(n theta) sec^(n) theta ,...

    Text Solution

    |

  16. If 0lex le(pi)/(3) then range of f(x)=sec((pi)/(6)-x)+sec((pi)/(6)+x) ...

    Text Solution

    |

  17. If A=sin^(8) theta + cos^(14) theta, then for all values of theta,

    Text Solution

    |

  18. Find the value of the expression 3[sin^(4)((3pi)/(2)-alpha)+sin^(4)(...

    Text Solution

    |

  19. The maximum value of the function f(x)=sin(x+pi/6)+cos(x+pi/6) in the ...

    Text Solution

    |

  20. If cot^2x=cot(x-y)(x-z),t h e ncot2x is equal to (w h e r ex!=pi/4) ....

    Text Solution

    |