Home
Class 12
MATHS
If cos^4 theta sec^2 alpha,1/2 and sin^4...

If `cos^4 theta sec^2 alpha,1/2` and `sin^4 theta cosec^2 alpha` are in `A.P.`, then `cos^8 theta sec^6 alpha ,1/2` and `sin^8 theta cosec^6 alpha` are

A

AP

B

GP

C

HP

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that if \( \cos^4 \theta \sec^2 \alpha, \frac{1}{2}, \sin^4 \theta \csc^2 \alpha \) are in Arithmetic Progression (A.P.), then \( \cos^8 \theta \sec^6 \alpha, \frac{1}{2}, \sin^8 \theta \csc^6 \alpha \) are also in A.P. ### Step-by-step Solution: 1. **Understanding the A.P. Condition**: For three numbers \( A, B, C \) to be in A.P., the condition is: \[ 2B = A + C \] Here, let: - \( A = \cos^4 \theta \sec^2 \alpha \) - \( B = \frac{1}{2} \) - \( C = \sin^4 \theta \csc^2 \alpha \) Thus, we have: \[ 2 \cdot \frac{1}{2} = \cos^4 \theta \sec^2 \alpha + \sin^4 \theta \csc^2 \alpha \] Simplifying gives: \[ 1 = \cos^4 \theta \sec^2 \alpha + \sin^4 \theta \csc^2 \alpha \] 2. **Expressing in Terms of Sine and Cosine**: We know: \[ \sec^2 \alpha = \frac{1}{\cos^2 \alpha} \quad \text{and} \quad \csc^2 \alpha = \frac{1}{\sin^2 \alpha} \] Therefore, we can rewrite the equation: \[ 1 = \cos^4 \theta \cdot \frac{1}{\cos^2 \alpha} + \sin^4 \theta \cdot \frac{1}{\sin^2 \alpha} \] This simplifies to: \[ 1 = \frac{\cos^4 \theta}{\cos^2 \alpha} + \frac{\sin^4 \theta}{\sin^2 \alpha} \] 3. **Cross Multiplying**: Multiply through by \( \cos^2 \alpha \sin^2 \alpha \): \[ \cos^4 \theta \sin^2 \alpha + \sin^4 \theta \cos^2 \alpha = \cos^2 \alpha \sin^2 \alpha \] 4. **Rearranging**: Rearranging gives: \[ \cos^4 \theta \sin^2 \alpha + \sin^4 \theta \cos^2 \alpha - \cos^2 \alpha \sin^2 \alpha = 0 \] 5. **Factoring**: This can be factored as: \[ (\cos^2 \theta \sin^2 \alpha - \cos^2 \alpha)(\cos^2 \theta \sin^2 \alpha + \sin^2 \theta) = 0 \] This implies: \[ \cos^2 \theta = \cos^2 \alpha \] 6. **Applying the Result**: Now we need to check if \( \cos^8 \theta \sec^6 \alpha, \frac{1}{2}, \sin^8 \theta \csc^6 \alpha \) are in A.P. Using the same substitution: \[ A' = \cos^8 \theta \sec^6 \alpha, \quad B' = \frac{1}{2}, \quad C' = \sin^8 \theta \csc^6 \alpha \] We can express: \[ A' = \frac{\cos^8 \theta}{\cos^6 \alpha}, \quad C' = \frac{\sin^8 \theta}{\sin^6 \alpha} \] 7. **Using the Previous Result**: Since \( \cos^2 \theta = \cos^2 \alpha \) and \( \sin^2 \theta = \sin^2 \alpha \), we can substitute: \[ A' = \frac{\cos^8 \alpha}{\cos^6 \alpha} = \cos^2 \alpha \] \[ C' = \frac{\sin^8 \alpha}{\sin^6 \alpha} = \sin^2 \alpha \] 8. **Final A.P. Condition**: Now, we check: \[ 2B' = A' + C' \] \[ 1 = \cos^2 \alpha + \sin^2 \alpha \] This is true, thus confirming that: \[ \cos^8 \theta \sec^6 \alpha, \frac{1}{2}, \sin^8 \theta \csc^6 \alpha \text{ are in A.P.} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|20 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|11 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 11|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

If cos(theta - alpha) , costheta , cos(theta + alpha) are in H.P. then costheta.sec(alpha/2) =

If cos(theta - alpha) , costheta , cos(theta + alpha) are in H.P. then costheta.sec(alpha)/2 =

If cos(theta-alpha),cos(theta),cos(theta+alpha) are in H.P. then costheta.secalpha/2

If cos(theta-alpha),costheta,cos(theta+alpha) are in H.P.,then costhetasec(alpha//2) is equal to

Prove that cos^2 theta cosec theta+sin theta=cosec theta

If cos (theta - alpha),cos(theta),Cos(theta + alpha) are in H.P. and cos alpha ne 1 , then angle alpha lie in the

From algebra we know that if ax^(2) +bx + c=0 , a( ne 0), b, c int R has roots alpha and beta then alpha + beta=-b/a and alpha beta = c/a . Trignometric functions sin theta and cos theta, tan theta and sec theta, " cosec " theta and cot theta obey sin^(2)theta + cos^(2)theta =1 . A linear relation in sin theta and cos theta, sec theta and tan theta or " cosec "theta and cos theta can be transformed into a quadratic equation in, say, sin theta, tan theta or cot theta respectively. And then one can apply sum and product of roots to find the desired result. Let a cos theta, b sintheta=c have two roots theta_(1) and theta_(2) . theta_(1) ne theta_(2) . The vlaue of cos(theta_(1) + theta_(2)) is a and b not being simultaneously zero)

From algebra we know that if ax^(2) +bx + c=0 , a( ne 0), b, c R has roots alpha and beta then alpha + beta=-b/a and alpha beta = c/a . Trignometric functions sin theta and cos theta, tan theta and sec theta, " cosec " theta and cot theta obey sin^(2)theta + cos^(2)theta =1 . A linear relation in sin theta and cos theta, sec theta and tan theta or " cosec "theta and cos theta can be transformed into a quadratic equation in, say, sin theta, tan theta or cot theta respectively. And then one can apply sum and product of roots to find the desired result. Let a cos theta, b sintheta=c have two roots theta_(1) and theta_(2) . theta_(1) ne theta_(2) . The value of cos(theta_(1)-theta_(2)) is (a and b not being simultaneously zero)

From algebra we know that if ax^(2) +bx + c=0 , a( ne 0), b, c in R has roots alpha and beta then alpha + beta=-b/a and alpha beta = c/a . Trignometric functions sin theta and cos theta, tan theta and sec theta, " cosec " theta and cot theta obey sin^(2)theta + cos^(2)theta =1 . A linear relation in sin theta and cos theta, sec theta and tan theta or " cosec "theta and cos theta can be transformed into a quadratic equation in, say, sin theta, tan theta or cot theta respectively. And then one can apply sum and product of roots to find the desired result. Let a cos theta, b sintheta=c have two roots theta_(1) and theta_(2) . theta_(1) ne theta_(2) . The values of tan theta_(1) tan theta_(2) is (given |b| ne |c|)

If sin theta+ cosec theta =2, then the value of sin^8 theta + cosec^8 theta is equal to

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Single Option Correct Type Questions)
  1. If 4nalpha =pi then cot alpha cot 2 alpha cot 3alpha ...cot (2n-1)alph...

    Text Solution

    |

  2. In DeltaABC, if (Sin A + SinB + SinC) (SinA + SinB - SinC) = 3SinA Sin...

    Text Solution

    |

  3. If t a nbeta=(ns inalphacosalpha)/(1-ns in^2alpha) , show that tan(alp...

    Text Solution

    |

  4. If (cos theta)/(a)=(sintheta)/(b), then (a)/(sec 2 theta)+(b)/(cosec 2...

    Text Solution

    |

  5. The graph of the function y = cos x cos (x+2) - cos^(2)(x+1) is

    Text Solution

    |

  6. If f (theta) = |sin theta| + |cos theta|, theta in R, then

    Text Solution

    |

  7. If P=cos(cos x)+sin (cos x), then the least and greatest value of P re...

    Text Solution

    |

  8. If u(n)=sin(n theta) sec^(n) theta, v(n)=cos(n theta) sec^(n) theta ,...

    Text Solution

    |

  9. If 0lex le(pi)/(3) then range of f(x)=sec((pi)/(6)-x)+sec((pi)/(6)+x) ...

    Text Solution

    |

  10. If A=sin^(8) theta + cos^(14) theta, then for all values of theta,

    Text Solution

    |

  11. Find the value of the expression 3[sin^(4)((3pi)/(2)-alpha)+sin^(4)(...

    Text Solution

    |

  12. The maximum value of the function f(x)=sin(x+pi/6)+cos(x+pi/6) in the ...

    Text Solution

    |

  13. If cot^2x=cot(x-y)(x-z),t h e ncot2x is equal to (w h e r ex!=pi/4) ....

    Text Solution

    |

  14. about to only mathematics

    Text Solution

    |

  15. If cos x-sin alpha cot beta sin x=cos alpha, then the vlaue of tan (x/...

    Text Solution

    |

  16. If cos^4 theta sec^2 alpha,1/2 and sin^4 theta cosec^2 alpha are in ...

    Text Solution

    |

  17. The maximum value of (cos alpha(1))(cos alpha(2))... ( cos alpha(n)) u...

    Text Solution

    |

  18. Find the set of values of x , which satisfy sin x * cos^(3) x gt cos x...

    Text Solution

    |

  19. If u=sqrt(a^2 cos^2 theta + b^2sin^2theta)+sqrt(a^2 sin^2 theta + b^2 ...

    Text Solution

    |

  20. For a positive integer n , let fn(theta)=(tantheta//2)(1+sectheta)(1+s...

    Text Solution

    |